

Responses of CO $_2$ and **CH** $_4$ fluxes in early stage managed re-alignment saltmarshes to tidal inundation and climatic conditions

Emma Waddington (1), James Rowson (1), André Antunes (1), and Hannah Mossman (2)

(1) Department of Geography, Edge Hill University, St Helens Road, Lancashire, L39 4QP, UK, (2) School of Science & The Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK

Saltmarsh restoration projects convert historic saltmarshes, reclaimed for agricultural land, back to functional saltmarshes, a process known as managed re-alignment. However, knowledge of carbon cycling at managed re-alignment sites is limited, speculation exists as to the magnitude of CO_2 and CH_4 fluxes and whether managed re-alignment sites are net carbon sinks.

A closed chamber method was used to collect data on CO_2 and CH_4 fluxes at a newly created managed re-alignment site in Hesketh, North-West England, and a naturally establishing saltmarsh in Southport, North-West England.

Site net ecosystem respiration for the managed re-alignment site ranged from 0.020 gCO₂ m⁻² h⁻¹ to 0.279 gCO₂ m⁻² h⁻¹ and had a slight positive correlation with soil temperature (r²= 0.385 n=32). Data from a nearby natural saltmarsh demonstrated NER (Net Ecosystem Respiration) values between 0.119 gCO₂ m⁻² h⁻¹ and 0.826 gCO₂ m⁻² h⁻¹ and had a stronger positive correlation between NER and soil temperature (r²= 0.488 n=17) than the managed re-alignment site. Initial data reveals that early stage managed re-alignment site carbon NEE (Net Ecosystem Exchange) is sensitive to tidal inundation. NEE CO₂fluxes reached their highest values on the managed re-alignment saltmarsh (0.238 gCO₂ m⁻² h⁻¹) after an inundation following a dry period (584 hours). Conversely CH₄fluxes for the managed re-alignment site were at their lowest values (-2.285E-5 gCH₄ m⁻² h⁻¹) during the same tidal inundation period. Following a similar drying period (559 hours) the natural saltmarsh continued to sink CO₂(-0.195 gCO₂ m⁻² h⁻¹), but converted from a CH₄ source (max value of 0.784E-5 gCH₄ m⁻² h⁻¹) to a sink (max value -4.023E-5 gCH₄ m⁻² h⁻¹) following inundation. The managed re-alignment site continued as a NEE CO₂ source until a second drying period occurred (157 hours) following a series of low tides returning it to a sink (-0.009 gCO₂ m⁻² h⁻¹). The natural site continued as a net ecosystem exchange CO₂ sink until vegetation die back occurred in late October returning it to a source of both CO₂ (0.103 gCO₂ m⁻² h⁻¹) and CH₄ (0.779E-5 gCH₄ m⁻² h⁻¹).