

Fe₂O₃ post-perovskite as a candidate phase for ultralow-velocity zones

Liang Yuan (1), Eiji Ohtani (1), Xiang Wu (2), Shengxuan Huang (3), Daijo Ikuta (1), Tatsuya Sakamaki (1), Seiji Kamada (1), Hiroshi Fukui (4,5), Satoshi Tsutsui (6), Hiroshi Uchiyama (6), Daisuke Ishikawa (5,6), Naohisa Hirao (6), and Alfred Baron (5)

(1) Department of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University, Sendai, Japan, (2) State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China, (3) Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University and School of Earth and Space Sciences, Peking University, Beijing, China, (4) Center for Novel Material Science under Multi-Extreme Conditions, University of Hyogo, Hyogo, Japan, (5) Materials Dynamics Laboratory, RIKEN SPring-8 Center, Hyogo, Japan, (6) Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo, Japan

The core–mantle boundary is the most fundamental chemical discontinuity in the Earth. Recent experiments showed that, when water meets iron at the core–mantle boundary, hydrogen-bearing iron peroxide FeO₂H_x can be produced, which then decomposes to Fe₂O₃ post-perovskite and fluids due to a steep temperature gradient at the core–mantle boundary regions. Therefore, post-perovskite Fe₂O₃ is one of the most plausible compounds at the core–mantle boundary. Here, for the first time, we measured experimentally the sound velocity of post-perovskite Fe₂O₃ through inelastic x-ray scattering. Combined with first-principles investigations, we show that Fe₂O₃ post-perovskite has very low sound velocities and strong anisotropy with respect to lower-mantle silicates. Therefore, Fe₂O₃ post-perovskite is a candidate phase for ultralow-velocity zones at the core–mantle boundary.

Acknowledgments: This work was partially supported by the JSPS Japanese-German Graduate Externship.