Geophysical Research Abstracts Vol. 21, EGU2019-12860, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

Quantifying \mathbf{CO}_2 and \mathbf{CH}_4 fluxes over an intermittently-irrigated rice paddy

Yorum Hwang (1), Youngryel Ryu (1), Minseok Kang (2), and Yan Huang (3)

(1) Seoul National University, Korea, Republic Of (yorum.hwang@gmail.com), (2) National Center for AgroMeteorology, Seoul, Korea, (3) Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea

Rice is a major crop that feeds more than half of global population. Rice paddy plays complex roles in carbon cycle by emitting CH₄ to the atmosphere while CO₂ is sequestered from or released to the atmosphere. Here, we present 3.5 years of eddy covariance measurements of CH₄ and CO₂ fluxes over an intermittently-irrigated rice paddy in Korea in tandem with carbon stock measurements in leaf, stem, grain, and root. The interannual variation of CO₂ fluxes was little although the timings of transplantation and harvest were different for each year. Rice paddy acted as a slight sink or neutral in CO₂ (-47.3 \pm 50.9 g C m⁻² y⁻¹; mean \pm 95% confidence interval) with 942.2 \pm 129.4 g C m⁻² y⁻¹ and 894.9 \pm 106.5 g C m⁻² y⁻¹ for gross primary production (GPP) and ecosystem respiration (Reco), respectively. Carbon stock in rice showed large interannual variation (760.2 \pm 183.7 g C m⁻²) with 70 \pm 19.8 g C m⁻², 232.1 \pm 83.3 g C m⁻², 378.2 \pm 75.5 g C m⁻², and 79.8 \pm 12.8 g C m⁻² for leaf, stem, grain, and root, respectively. The rice paddy emitted 21.7 \pm 2.5 g C m⁻² y⁻¹ of CH₄. When considering the global warming potential of CH₄ (197.3 g CO₂-Ceq m⁻² y⁻¹), the paddy shift from carbon sink to source (150 g CO₂-Ceq m⁻² y⁻¹). The CH₄ flux showed a bimodal seasonal pattern caused by the mid-season drainage which turned the soils aerobic conditions so prohibited CH₄ emissions. The irrigation practices, which are different every year, resulted in the significant interannual variation of CH₄ emissions (\pm 7%). These findings will be useful to understand carbon budgets and cycles, and develop carbon and water managements in rice paddy.