

Unravelling processes and timescales of tropical pedogenesis using luminescence dating

Tobias Sprafke (1), Heinz Veit (1), Christine Thiel (2), Andre O. Sawakutchi (3), Felix Lauer (4), Annette Kadereit (5), Leonor Rodrigues (1), Marcia R. Calegari (6), Beatriz M. Rodrigues (7), Paul Tchawa (8), Paul-Desire Ndjigui (9), Phillippe Tchomga (1), and Pablo Vidal-Torrado (7)

(1) University of Bern, Institute of Geography, 3012 Bern, Switzerland (tobias.sprafke@giub.unibe.ch), (2) Leibniz Institute for Applied Geophysics, Section S3: Geochronology, 30655 Hannover, Germany, (3) University of São Paulo, Institute of Geosciences, São Paulo, SP, Brazil, (4) Friedrich-Schiller-University Jena, Institute of Geography, 07743 Jena, Germany, (5) University of Heidelberg, Institute of Geography, 69120 Heidelberg, Germany, (6) Geography Department, University of West Paraná State - Campus Marechal Cândido Rondon, 85960-000 Marechal Cândido Rondon, PR, Brazil, (7) Soil Science Department, University of São Paulo, 13418-900 Piracicaba, SP, Brazil, (8) University of Yaounde 1, Department of Geography, P.O. Box 755, Yaounde, Cameroon, (9) University of Yaounde I, Department of Earth Sciences, P.O. Box 812, Yaounde, Cameroon

The age and genesis of thick and strongly weathered tropical soils is a matter of persistent debate. In-situ processes alone may not sufficiently explain the formation and spatial distribution of deep tropical soils. Allochthonous components, transported e.g. by water along the slope or by wind from longer distances have to be considered.

On Quaternary time scales, luminescence dating is a prominent tool to date sedimentation, as it is able to detect the last moment of sunlight exposure of quartz or feldspar grains. Bioturbation affects the quality of obtained sedimentation ages, but recent studies indicate the possibility to use luminescence methods to quantify soil turnover by biologic activity.

Assumptions about the rate of soil productions in the tropics require differentiating the role of soil macrofaunal activity, slope processes and aeolian influx. We currently apply a multi-method approach to study the age and forming processes of thick Ferralsols. Profiles are located in the Cerrado region of southeast Brazil, within the peripheral depression of São Paulo State, characterized by various sedimentary and igneous rocks, and under rainforest on the crystalline basement of the South Cameroon Plateau.

Preliminary luminescence data indicate Late Pleistocene to Holocene ages for most samples. We discuss the significance of luminescence ages to understand the forming processes of these soils in the interplay of pedogenesis and sedimentation and implications for paleoenvironmental reconstructions.