

Biomarkers reveal that high-latitude Southern Ocean carbon sink enhanced by seasonal sea-ice feedbacks during the Antarctic Cold Reversal

Christopher Fogwill (1), Chris Turney (2), Laurie Menzies (2), Andy Baker (2), Mike Weber (3), Bethany Ellis (4), Zoë Thomas (2), Nick Golledge (5), David Etheridge (6), Mauro Rubino (1), Siwan Davies (7), Tas van Ommen (8), Eleanor Rainsley (8), Neils Munksgaard (9), Michael Bird (9), Jenifer Pike (10), John Love (11), Ann Power (11), Laura Weyrich (12), Alan Cooper (12), and the The Patriot Hills Blue Ice Team

(1) University of Keele, School of Geography, Geology and the Environment, Keele, United Kingdom (cj.fogwill@keele.ac.uk), (2) Climate Change Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, 2052, Australia, (3) Steinmann Institute, University of Bonn, Poppelsdorfer Schloss, Bonn, Germany, (4) Research School of Earth Sciences, Australian National University, Canberra, Australia, (5) Antarctic Research Centre, Victoria University of Wellington, Wellington 6140, New Zealand, (6) CSIRO Oceans and Atmosphere, Aspendale, Victoria, 3195 Australia, (7) Department of Geography, Swansea University, Swansea, United Kingdom, (8) Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia, (9) Centre for Tropical Environmental and Sustainability Science, College of Science, Technology and Engineering, James Cook University, Cairns, Australia, (10) School of Earth and Ocean Sciences, University of Cardiff, Wales, UK, (11) The BioEconomy Centre, Biosciences, University of Exeter, UK, (12) Australian Centre for Ancient DNA, University of Adelaide, 5005, Australia

The Southern Ocean plays a fundamental role in regulating global atmospheric CO₂ levels, yet the underlying processes and feedbacks that control the carbon cycle during climate transitions remain unclear. Following the Last Glacial Termination (LGT), the rapid rise in atmospheric CO₂ was interrupted by an enigmatic 1,900-year plateau during a period of pronounced mid- to high-latitude Southern Hemisphere cooling called the Antarctic Cold Reversal (ACR, 14,600-12,700 years ago or 14.6-12.7 kyr BP. Figure 1). Here we report the first biomarker and ancient DNA analysis of a highly-resolved Antarctic 'horizontal' ice core, which combined with marine sediment records reveals a coherent signal of marine productivity and microbial diversity changes across the South Atlantic sector of the Southern Ocean during the LGT.

Our study develops four important new approaches in the analysis of biomarkers captured within a new and highly resolved Antarctic ice core record (Imaging Flow Cytometry (ImageSteam®), fluorescence biomarker, DNA and liquid chromatographic carbon detection), to reconstruct high-latitude Southern Ocean surface productivity through the LGT. We identify marked variations in biomarker signals through the LGT derived from precipitation delivered by low-pressure systems tracking across the South Atlantic sector of the Southern Ocean. We record high concentrations during the period defined by the ACR, reflecting a marked increase in marine bacteria and algae (including picoplankton and larger nanoplankton), and a increase in marine species diversity . Each measure (proxy) is independent, yet mutually supportive, with remarkable coherence through this period of abrupt and extreme change

Together, these data provides direct evidence that during the ACR feedbacks enhanced the Southern Ocean biological pump at high-latitudes, whilst at mid-latitudes wind induced ventilation reduced it. To understand the mechanisms driving this signal we use available proxy reconstructions and transient climate modelling to demonstrate that this period of enhanced marine productivity coincides with the largest seasonal variability in sea-ice extent. We suggest triggered seasonally high productivity in the high-latitude Southern Ocean, contrasting with the records further north. Transient climate modelling shows this period coincided with the maximum seasonal variability in sea-ice extent, suggesting sea-ice feedbacks enhanced CO₂ sequestration, making the high-latitude Southern Ocean a significant carbon sink that contributed to the sustained plateau in CO₂ levels during the ACR.