

Rapid development of permafrost thermokarst landforms detected by repeated Unmanned Aerial Vehicle surveys in the northeastern Qinghai-Tibetan Plateau

Zhiwei Zhou (1), Liming Jiang (1), Lin Liu (2), Hansheng Wang (1), and Tingjun Zhang (3)

(1) State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Science, Wuhan, China (zhiwei.zhou@whigg.ac.cn), (2) Earth Science System Programme, The Chinese University of Hong Kong, Hong Kong, China (liulin@cuhk.edu.hk), (3) Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China (tjzhang@lzu.edu.cn)

The number and area of thermokarst landforms are continuously increasing on the Qinghai-Tibet Plateau due to climate warming and anthropogenic disturbance since 1950s. To quantify the development of thermokarst landforms, we investigated sinkhole, thermal erosion gullies and slump-gully-complex three types of hillslope process thermokarst landforms by differencing high-resolution digital terrain models (DSMs) acquired by Unmanned Aerial Vehicle in 2016 and 2017 summers. Different development patterns are observed in these three types of thermokarst landforms: the sinkhole presents up to -5 m/year subsidence rate, the erosion gully shows up to 15 m/year headwall retreat rate, while the subsidence and headwall retreat rate of slump-gully-complex falls in between of the other two types. The results show that the Qinghai-Tibet Plateau is undergoing rapid thermokarst landforms development. The fast development of thermokarst landforms will likely amplify the ecological, geomorphology, environment and engineering-related hazards impacts.