Geophysical Research Abstracts Vol. 21, EGU2019-15488, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

Atmospheric Oxidation Chemistry of Meteor Ablated Phosphorus

Kevin Douglas, Thomas Mangan, David Bones, Juan Diego Carrillo Sánchez, Mark Blitz, and John Plane University of Leeds, Chemistry, Leeds, United Kingdom (k.m.douglas@leeds.ac.uk)

Phosphorus, P, is a key biological element with major roles in replication, information transfer, and metabolism. Interplanetary dust particles contain $\sim 0.1\%$ P by weight, and meteoric ablation in the 1 μ bar region of a planetary upper atmosphere can generate significant amounts of atomic P, which will then undergo atmospheric processing before deposition at the surface. Orthophosphate (oxidation state +5) is the dominant form of inorganic P at the Earth's surface; however, due to the low water solubility and reactivity of such P(V) salts, they have a poor bioavailability. In contrast, less oxidised forms of P (oxidation state $\leq +3$) are far more bioavailable. It has been suggested that these reduced forms of P may have originated from extra-terrestrial material that fell to Earth during the heavy bombardment period. Previous studies have focused on the direct delivery of P to the surface in meteorites, to undergo processing through aqueous phase chemistry. In contrast, the atmospheric chemistry of P has so far been ignored.

The vaporized P atoms entering the upper atmospheres of the terrestrial planets will undergo chemical processing to form a variety of compounds in which P may exist in different oxidation states due to the presence of both oxidizing and reducing agents. Initial oxidation of P is likely to proceed *via* reactions 1-4 to produce PO₂. From PO₂, an exothermic route to phosphoric acid exists *via* the formation of HOPO₂ (R5-6); however, the bio-available compound phosphonic acid (H₃PO₃) should also form *via* HPO₂ (R7-8):

$$P + O_2 \longrightarrow PO + O (R1)$$

$$P + CO_2 \longrightarrow PO + CO (R2)$$

$$PO + O_2 \longrightarrow PO_2 + O (R3)$$

$$PO + CO_2 \longrightarrow PO_2 + CO (R4)$$

$$PO_2 + OH \longrightarrow HOPO_2 (R5)$$

$$HOPO_2 + H_2O \longrightarrow H_3PO_4 (R6)$$

$$PO_2 + H \longrightarrow HPO_2 (R7)$$

$$HPO_2 + H_2O \longrightarrow H_3PO_3 (R8)$$

Using a pulsed laser photolysis (PLP)-laser induced fluorescence (LIF) technique, reactions R1-4 have been studied as a function of temperature for the first time. P atoms were generated in the presence of O_2 and CO_2 by PLP of PCl_3 , and the subsequent growth and decay of the PO radical monitored by LIF. Initial investigations into the reaction of $P + O_2$ (R1) indicated an inverse pressure dependence, with the rate decreasing with increasing pressure. We attribute this pressure dependence to the interference of two reactive low-lying metastable states of P (the 2D and 2P states), which are quenched at higher bath gas pressures. Thus by conducting experiments at high bath gas pressures (\sim 20 torr) rate coefficients for the reaction of ground state $P(^4S)$ could be measured. The removal rates of both excited states of P with O_2 and CO_2 have also been investigated, and studies of the reactions of PO_2 (R5 and R7) are currently underway.

In addition to understanding the reaction kinetics, the ablation process is also under investigation. Using a meteoric ablation simulator, the temperature at which P and PO ablate from apatite, a phosphorus rich mineral, has been measured, and compared with a computer model of the process.