Geophysical Research Abstracts Vol. 21, EGU2019-15552-1, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. ## Mg incorporation in Fe_5O_6 and its relevance as a possible mantle phase Laura Uenver-Thiele (1), Alan B. Woodland (1), Tiziana Boffa Ballaran (2), and Nobuyoshi Miyajima (2) (1) Institut für Geowissenschaften, Goethe Universität, Frankfurt am Main, Germany (uenver-thiele@em.uni-frankfurt.de), (2) Bayerisches Geoinstitut, Bayreuth, Germany Recent studies on the simple Fe-O system demonstrate that the list of possible high-pressure phases has to be expanded by adding new oxide phases such as Fe_4O_5 , Fe_5O_6 , Fe_7O_9 , Fe_9O_{11} [1,2,3,4,5]. These new stoichiometries highlight that our understanding of such a simple binary system was far too limited. Fe_4O_5 and Fe_5O_6 has been proven to be stable over a wide range of pressure and temperature corresponding to those of the Earth's deep upper mantle and transition zone. Based on their ability to incorporate Fe^{3+} as well as Fe^{2+} , the stability of these mixed-valenced Fe-oxides are related to the prevailing oxygen fugacity in the Earth's interior. Since M_4O_5 stoichiometries become stable as post-spinel phases and can coexist with Si-bearing phases [6,7,8], this stoichiometry needs to be considered as a potential constituent of the mantle assemblage. However, based on the fact that Fe₄O₅ has a higher Fe³⁺/Fe_{tot} (=0.5) than Fe₅O₆ with Fe³⁺/Fe_{tot} =0.4, the latter phase might be more relevant for the expected redox conditions in the Earth. Since Fe₅O₆ and Fe₄O₅ share the same orthorombic *Cmcm* space group and Fe₄O₅ forms a complete solid solution along the Fe₂Fe₂O₅-Mg₂Fe₂O₅ binary join [8], the same behavior might be also expected for Fe₅O₆. But, the ability of Fe₅O₆ to form Mg²⁺-Fe²⁺ solid solutions (i.e. Fe₅O₆-Mg₃Fe₂O₆) remains essentially unknown, which is why the aim of this experimental study is to investigate (i) the solubility of Mg in the Fe₅O₆ structure and (ii) its phase relations at relevant mantle conditions. Experiments were carried out at 8-20 GPa and temperatures $1000-1600^{\circ}$ C using the multi-anvil apparatus. Starting materials were stoichiometric mixtures of MgO, Fe⁰ and Fe₃O₄ components. Run products were analysed by electron microprobe, powder XRD and in some cases by TEM. Preliminary results indicate that a solid solution along the Fe $_5$ O $_6$ -Mg $_3$ Fe $_2$ O $_6$ binary is incomplete; the Mg $_3$ Fe $_2$ O $_6$ is not stable. The phase diagram for Mg $_{0.5}$ Fe $_{2.5}$ Fe $_2$ O $_6$ indicates that the phase relations strongly deviate from that of the Fe 2 +-endmember composition. The low-pressure stability of Fe $_5$ O $_6$ is limited down to \sim 9 GPa over a wide temperature range (900-1400°C), where the assemblage M_3O_4 + (Mg,Fe)O becomes stable. The stability field of Fe $_5$ O $_6$ pinches out with increasing pressure, but is still stable at 28 GPa (at 1500°C). In contrast, in the Mg-bearing compositions an intervening M_4O_5 + (Mg,Fe)O assemblage is stable between 9-18 GPa. With increasing pressure, Mg $_{0.5}$ Fe $_{2.5}$ Fe $_2$ O $_6$ becomes stable relative to the assemblage (Mg,Fe) $_2$ Fe $_2$ O $_5$ + (Mg,Fe)O and seems to be limited to \sim 20 GPa. Mg $_{0.5}$ Fe $_{2.5}$ Fe $_2$ O $_6$ can coexist with (Mg,Fe)O and/or M_9O_{11} . - [1] Lavina et al. (2011) Proceedings of the National Academy of Science 108, 17281-17285 - [2] Woodland et al. (2012) American Mineralogist 97, 1808-1811 - [3] Woodland et al. (2015) Goldschmidt Abstracts, 3446 - [4] Lavina and Meng (2015) Science Advances 1, 5, e1400260 - [5] Sinmyo et al. (2016) Nature Scientific Reports 6, 32852 - [6] Woodland et al. (2012) Contributions to Mineralogy and Petrology 166, 1677-1686 - [7] Bindi et al. (2016) Physics and Chemistry of Minerals 43, 103-110 - [8] Uenver-Thiele et al. (2018) Contributions to Mineralogy and Petrology 173:20