Geophysical Research Abstracts Vol. 21, EGU2019-15646, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

Unsupervised Learning Reveals Geography of Global Ocean Dynamical Regions

Maike Sonnewald (1,2), Carl Wunsch (1,2), and Patrick Heimbach (3)

(1) Massachusetts Institute of Technology, EAPS, United States (sonnewald@fas.harvard.edu), (2) Harvard University, EPS, United States, (3) University of Texas at Austin, ICES, United States

Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a twenty-year mean of the ECCO state estimate at 1° resolution. An unsupervised learning algorithm, k-means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers $43\pm3.3\%$ of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque (BPT) and the non-linear torque. Cluster 2 covers $24.8\pm1.2\%$, where the beta effect balances the BPT. Cluster 3 covers $14.6\pm1.0\%$, characterized by a 'Quasi-Sverdrupian' regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering $6.9\pm2.9\%$ of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual 'dominantly non-linear' regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries.