Geophysical Research Abstracts Vol. 21, EGU2019-15928, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

$^{17}\mathrm{O}^{18}\mathrm{O}$ and $^{18}\mathrm{O}^{18}\mathrm{O}$ in firn air O_2 from East Greenland and Antarctica

Amzad Laskar (1), Rahul Peethambaran (1), Sergey Gromov (2), Thomas Blunier (3), and Thomas Röckmann (1) (1) Institute for Marine and Atmospheric Research Utrecht, Utrecht, Netherlands (amzadhussain2000@gmail.com), (2) Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany, (3) Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Abundances of $^{17}O^{18}O$ and $^{18}O^{18}O$ (called clumped isotopes, denoted by Δ_{35} and Δ_{36}) of O_2 in polar firn and ice core air can be useful to study past changes in atmospheric photochemistry. We present Δ_{35} and Δ_{36} values measured in firn air O₂ from East Greenland (EGRIP: 75.63°N, 35.99°W) and EPICA Dome C, Antarctica (75.10 °S, 123.33 °E). Firn air samples were collected down to the bubble close-off depth. The mean age of the firn air increases with depth to \sim 40 and \sim 50 years at close-off at EGRIP and Dome C, respectively. Measurements of Δ_{35} and Δ_{36} were carried out using a high-resolution stable isotope ratio mass spectrometer Themro Fisher 253 ULTRA at medium mass resolution (mass resolving power ~10000). We demonstrated that 253 ULTRA can resolve all the major isobaric interferences for O_2 clumped isotope measurements such as the influence of ^{35}Cl (mass 34.9688 u) on $^{17}O^{18}O$ (mass 34.9983) and $H^{36}Cl$ (mass 35.9767 u) and ^{36}Ar (mass 35.9675 u) on $^{18}O^{18}O$ (mass 35.9983). Thus the two clumped isotope species of O2 can be measured without correction even if the O2 samples are not fully free from these potential isobars (Laskar et al., 2019). The isotopic effect due to gravitational settling is insignificant for the second order isotope signatures Δ_{35} and Δ_{36} , although strongly affects the conventional isotope ratios. The average Δ_{35} and Δ_{36} values for the Dome C firn air O_2 are $1.26\pm0.06~\%$ and $2.42\pm0.10~\%$ respectively. For the EGRIP, the values are 1.28±0.09 ‰ and 2.40±0.10 ‰ respectively. No significant difference in the Δ_{35} and Δ_{36} values with depth are observed indicating that potential temporal trends in the clumped isotope signatures of O₂ are below the present measurement precision. In order to estimate the expected temporal variation, we simulated the temporal evolution of Δ_{36} from 1960 to 2010 using the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model. The model results confirm that expected changes in Δ_{36} over this period are indeed smaller than the present analytical precision. The modeled Δ_{36} values agree well with the measurements. We plan to extend the measurements and model simulations to study glacial-interglacial variation in the atmospheric photochemistry and tropospheric temperature using Δ_{35} and Δ_{36} values in O_2 trapped in polar ice core air with enhanced analytical precision.

References

Laskar A. H., Peethambaran, R., Adnew, G. A. and Röckmann, T. (2019) Measurement of $^{18}O^{18}O$ and $^{17}O^{18}O$ in atmospheric O_2 using the 253 Ultra mass spectrometer and applications to stratospheric and tropospheric air samples. Rapid Comm. Mass Spec. (under review)