

Phosphorus Uptake Patterns of Norway spruce (*Picea abies*) Seedlings from Different P-loaded Minerals in a Laboratory Pot Experiment with Silicate Soils

Dingzhu Liao, Luis Carlos Colacho Hurtarte, and Jörg Prietzel
Technical University of Munich, Freising, Germany (ga84rir@mytum.de)

Phosphorus (P) deficiency is becoming a worldwide challenge since it is one of the most common limiting elements to primary productivity and other biological processes in terrestrial ecosystems. P limitation is caused not only due to P resource shortage, but also because of its association with secondary minerals, particularly aluminium and iron. However, plants can thrive in P deficient environment through different strategies. In this study, we aim to investigate the interactions between different initial P species and plants based on a laboratory pot experiment with artificial silicate soils. We prepared both inorganic and organic-P-loaded silicate soils consisting of either ferrihydrite (FH), Al-saturated montmorillonite (Al-MT) or the mixture of FH and Al-MT in a quartz matrix. Mycorrhized *Picea abies* seedlings were grown in those pots for four months under controlled conditions. At the end of the experiment we analysed the soil physical-chemical parameters (pH₁₀), and above and belowground nutrient concentration. Our results show that soil pH, inorganic phosphorus, carbon and nitrogen concentration were all significantly increased by plant cultivation. Moreover, plants grown in inorganic-P loaded soils had a significantly higher shoot biomass and P content than those in organic-P loaded soils. The mineralogy also affected plant growth, as plants grown under FH loaded soils had a higher total biomass (shoot and root biomass) than those grown on other mineralogy. The P content of both shoot and root of Al-MT loaded soils was the highest among the three types of minerals. In conclusion, plant growth was affected by initial P speciation and soil mineralogy, but also plants presence affected the overall soil physical-chemistry, thus increased P desorption and modified P speciation.