Coarse-graining as a technique to reveal sub-grid scale fluxes and test the diffusive assumption.

Bastian Sommerfeld
Leibniz Institute for Atmospheric Physics, Theory and Modelling, Germany (sommerfeld@iap-kborn.de)

In climate simulation applications, parameterizations are omnipresent and a necessity to numerically simulate climate, wheater and ocean dynamics. The go-to approach is to use diffusive parameterizations to account for various sub-grid scale effects. Many advanced parametrization techniques like the Dynamical Smagorinsky Diffusion or backscatter approaches build on the core assumption of non-local non-organized sub-grid scale fluxes. This study aims to verify this core assumption using a coarse-graining technique to make commonly diffusively parametrized processes such as the turbulent shear production ϵ_{sh} term visible. Early results indicate very organized and localized structures of ϵ_{sh} and hence the diffusive assumption may potentially be flawed. This may be of large consequence to the entirety of dynamics modeling.