

Implementation and evaluation of non-local integration scheme for numerical modelling of fracture processes.

Dmitri Naumov (1), Francesco Parisio (1), Olaf Kolditz (1,2)

(1) Helmholtz Centre for Environmental Research – UFZ, Environmental Informatics, Leipzig, Germany
(dmitri.naumov@ufz.de), (2) Technische Universität Dresden, Applied Environmental Systems Analysis, Dresden, Germany

Fracture propagation in brittle rock is widely studied in classical theory of linear elastic fracture mechanics; however, this neglects dissipation in the fracture zone.

Micro-cracking, plasticity and other dissipative processes imply non-linearities in the constitutive response. To study such non-linear effects, we developed a plastic-damage model and implemented a non-local finite element method.

We employed configurational mechanics arguments to compute fracture energy. The implementation of the non-local integration method is done in OpenGeoSys-6 finite element open-source software.

Several techniques for computation of the non-local integrals are presented and major performance bottlenecks and memory access patterns as well as cache locality are discussed.

Furthermore, we investigate possibilities for MPI parallelization of the non-local integration.

Numerical results are compared to acoustic emission detection experiments on Adelaide black granite and demonstrate that the size of the fracture process zone plays a significant role in fracture development and in the global load-displacement response.

Through configurational mechanics, we achieve better estimates of fracture energy when crack-tip dissipation is non-negligible, ultimately improving the interpretation of experiments designed to highlight the dominant physical mechanisms driving fracture.

Additionally, we achieved sufficient speedup of the non-local algorithm compared to the more standard approaches of the non-local integral computations.

The higher numerical efficiency opens up new possibilities in terms of large-scale, three-dimensional and parallelized analyses.

References:

Kolditz, Olaf, Sebastian Bauer, Lars Bilke, Norbert Böttcher, Jens-Olaf Delfs, Thomas Fischer, Uwe J. Görke et al. "OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media." *Environmental Earth Sciences* 67, no. 2 (2012): 589-599.

Parisio, Francesco, Ali Tarokh, Roman Makhnenko, Dmitri Naumov, Xing-Yuan Miao, Olaf Kolditz, and Thomas Nagel. "Experimental characterization and numerical modelling of fracture processes in granite." *International Journal of Solids and Structures* (2018).