

Microscopic characterization of mineral building materials

Benjamin Blykers (1), Tim De Kock (1), Aurélie Isebaert (2), Hilde Chambart (2), and Veerle Cnudde (1)

(1) Pore-scale Processes in Geomaterials Research Group (PProGRess), Department of Geology, Ghent University, Ghent, Belgium, (2) Wienerberger nv/sa, Kapel ter Bede 121, 8500 Kortrijk, Belgium

In this research project we will answer several currently existing unknowns in the characterization of mineral building materials and their weathering. The first phase of this project focusses on the multi-scale characterization of the mineral building materials. Micro-tomography (μ CT) and scanning electron microscopy – energy-dispersive X-ray spectroscopy (SEM-EDS) will be used to identify the different components within the selected building materials. μ CT is a non-destructive imaging technique which allows 3D characterization of structures within mineral building materials and the identification of minerals based on the attenuation coefficient as each mineral has a unique attenuation coefficient which depends on their mineralogical composition, its density and X-ray energy. Without prior knowledge of the identity of the present minerals, however, it remains very challenging to identify which grey value in the μ CT image corresponds to which mineral as μ CT does not provide compositional information in the way that SEM-EDS does.

Both μ CT and SEM-EDS will be used in this project to characterize different mineral building materials and to pinpoint the limitations of the current μ CT setup. Where possible, optimal scanning parameters will be applied to enhance the contrast between different minerals. Besides mineral identification, attention will be given to multiscale pore structure characterization. As there is an important trade-off between resolution and sample size, a workflow will be set-up in order to characterize the material at different resolutions in order to obtain the multi-scale pore characteristics. In a further stage of this project also information of features smaller than the resolution will be obtained.

Acknowledgements

This research is part of the MoCChA-CT project, funded by the Research Foundation – Flanders in the Strategic Basic Research Programme (FWO-SBO). The authors also wish to express their gratitude to all the partners of the project for their cooperation.