

Strengthened linkage between midlatitudes and Arctic in boreal winter

Shengping He (1), Xinping Xu (2), Yongqi Gao (3,4), Tore Furevik (1), Huijun Wang (2,4,5), Fei Li (6,2), and Fumiaki Ogawa (1)

(1) University of Bergen, Geophysical Institute, Bjerknes Centre for Climate Research, Norway (shengping.he@uib.no), (2) Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China (xuxinping1995@163.com), (3) Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research, Bergen, Norway (gyq@mail.iap.ac.cn), (4) Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China (gyq@mail.iap.ac.cn), (5) Climate Change Research Center, Chinese Academy of Sciences, Beijing, China (wanghj@mail.iap.ac.cn), (6) NILU-Norwegian Institute for Air Research, Kjeller, Norway (Fei.Li@nilu.no)

Early studies have suggested a linkage between the surface warming over the Barents-Kara Seas and the strength of the Siberian high in boreal winter. Here, we show that the linkage is not stable, and with an apparent interdecadal change in the late-1990s. Coinciding with Arctic surface warm anomalies in recent decades (1997–2017), the Siberian high has been significantly intensified, the East Asian jet stream has expanded westward, and an apparent Rossby wave has propagated from the Arctic to East Asia, suggesting an atmospheric teleconnection between midlatitudes and Arctic. In contrast, midlatitude atmospheric circulation anomalies coinciding with Arctic surface warm anomalies were barely statistically significant during 1979–1996. The associated strong anomalous ascending/descending motions and divergent/convergent upper troposphere air masses over the Arctic-Eurasian sector seem to have favored the midlatitude-Arctic linkage during 1997–2017. We hypothesize that Arctic midtropospheric warming plays a crucial role for the linkage between midlatitudes and Arctic in boreal winter. Multi-model simulations support this, and also point to internal atmospheric variability as the cause for the interdecadal shift in the strength of the midlatitude-Arctic linkage.