Geophysical Research Abstracts Vol. 21, EGU2019-1823, 2019 EGU General Assembly 2019 © Author(s) 2018. CC Attribution 4.0 license.

Extraction of Polystyrene Nano- and Microplastics from Biosolids and Soil

Markus Flury (1), Zhan Wang (2), Stephen Taylor (1), and Prabhakar Sharma (3)

(1) Washington State University, Crop and Soil Sciences, Pullman, United States (flury@wsu.edu), (2) College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China, (3) School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India

Extraction and quantification of nano- and microplastics from sediments and soils is challenging. Flotation is commonly used to separate plastic from mineral material. Here, we tested the efficiency of flotation for the extraction of nano- and microplastics from biosolids and soil. Biosolids and soil samples were spiked with polystyrene nanoand microbeads (diameter 0.05, 1.0, 2.6, 4.8, and 100 μ m). Different extraction methods were tested, and after extraction, plastic beads were separated from mineral particles by flotation in a ZnCl₂ solution. Large beads (100 μ m) could be quantitatively extracted (~100%) from both biosolids and soils, but smaller beads had low extraction efficiencies (ranging from 5 to 80%, with an average of 20%). The challenge is to quantitatively extract nano- and microbeads from a biosolids or soil matrix. Samples high in organic matter content require removal of the organic matter, but the common method of H₂O₂ oxidation leads to poor extraction efficiencies for nano- and microbeads.