Geophysical Research Abstracts Vol. 21, EGU2019-1972, 2019 EGU General Assembly 2019 © Author(s) 2018. CC Attribution 4.0 license.



## Dark CO<sub>2</sub> fixation by soil microbes contributes to soil organic matter formation in soils from an old growth deciduous forest.

Rachael Akinyede (1), Martin Taubert (1), Marion Schrumpf (2), Susan Trumbore (2), and Kirsten Küsel (1) (1) Friedrich Schiller University, Institute of Biodiversity, Jena, Aquatic Geomicrobiology, Germany (rachael.akinyede@uni-jena.de), (2) Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena

Soils are the largest terrestrial organic carbon pool and one of the largest terrestrial sources of CO2 in the atmosphere. However, not all CO<sub>2</sub> produced in soils is released into the atmosphere. Microbial CO<sub>2</sub> fixation has been shown to modulate CO<sub>2</sub> release from soils, yet studies on microbial CO<sub>2</sub> fixation in soils are scarce. Here, we explore microbial CO<sub>2</sub> fixation in soils of a temperate forest, as forests are recognized as one of the largest and most important ecosystems on earth. Our study aimed to assess the rates of microbial CO2 fixation, the biogeochemical parameters influencing them, and the contribution of this process to soil organic matter formation, using a well characterized Eutric Cambisol soil plot in the Hainich National Park, Germany. In this study, we hypothesize that dark CO<sub>2</sub> fixation is mainly driven by autotrophs throughout the soil profile and that the contribution of this process to microbial biomass and soil organic matter formation increases with soil depth. Dark CO<sub>2</sub> fixation was quantified via the uptake of 13C-CO<sub>2</sub> added to microcosms containing soils sampled from three depths. Under 2% CO<sub>2</sub> headspace, rates of microbial CO<sub>2</sub> fixation decreased with depth from 0.86  $\mu g$  C gdw-1d-1 in 0 - 12 cm to 0.05  $\mu g$  C gdw-1d-1 in 70 -100 cm. However, as microbial biomass also declined with depth, no significant differences were observed when rates were normalized to microbial biomass. This consistency in the normalized CO<sub>2</sub> fixation rates across depths presents microbial biomass as a main parameter determining CO<sub>2</sub> fixation rates in the soils investigated. Furthermore, an increase of the headspace CO<sub>2</sub> concentration enhanced microbial CO<sub>2</sub> fixation rates; with up to a 3.4 fold increase in fixation rate under 20% CO<sub>2</sub> showing that microbial CO<sub>2</sub> fixation can be substantial especially in soil microsites with higher CO<sub>2</sub> concentrations. Moreover, after 28 days of incubation, the labeled 13C fixed by microbes accounted for up to 1.1% of microbial biomass carbon and up to 0.035% of soil organic carbon. To determine if CO<sub>2</sub> fixation was carried out by autotrophs or heterotrophs, cbbL IA, cbbL IC and cbbM RuBisCO marker genes involved in autotrophic CO<sub>2</sub> fixation were quantified by qPCR. Surprisingly, the cbbL IA and cbbL IC genes together represented less than 0.1% of the bacterial 16S rRNA gene copies independent of soil depth. Likewise, a DNA stable isotope probing approach revealed no increased abundance of putative autotrophs using RuBisCO in the 13C labelled microbial community. These findings suggest that dark CO2 fixation is an important process that contributes to microbial biomass and soil organic carbon formation across soil depths with a majority of CO<sub>2</sub> fixation performed by heterotrophs, and autotrophs playing only a minor role.