Geophysical Research Abstracts Vol. 21, EGU2019-2190-1, 2019 EGU General Assembly 2019 © Author(s) 2018. CC Attribution 4.0 license.

Karst river can outgas more CO₂ than non-karst rivers

Hu Ding (1,2), Susan Waldron (1), Jason Newton (3), Mark Garnett (4), and Trevor Hoey (1)

University of Glasgow, School of Geographical and Earth Sciences, Glasgow, United Kingdom (hu.ding@glasgow.ac.uk),
State key laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang,
Stools1, China, (3) Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride,
G75 0QF, UK, (4) NERC Radiocarbon Facility, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK

Global estimates for the CO_2 flux from river waters to the atmosphere have substantially increased over the last decade. More data from under- represented landscape are needed to refine these estimates. Rivers draining karst landscape are generally oversaturated with CO_2 and thus should outgas CO_2 to the atmosphere, but this has not been well quantified, largely because it has been assumed that karst systems are a sink for atmospheric CO_2 by carbonate weathering.

To qualify and compare the rates of CO_2 emissions from karst fluvial drainages, we deployed floating chambers to estimate instantaneous CO_2 emissions in karst and non-karst catchments in SW of China. CO_2 flux (FCO₂) from karst system can be greater than non-karst, spanning the reported ranges of global FCO₂ obtained by direct measurement. Karst sites FCO₂ is positively-correlated with the product of \bar{u} and pCO₂, as with non-karst sites. Pool our data and all available direct measurements from global rivers, we find a single model (using multiple regression and log transformed \bar{u} and pCO₂) describes the

 FCO_2 from river waters This model has a geographically wider and lithologically more diverse reach, and also includes ingress.

Carbonate lithology covers a significant part of the Earth's surface, thus studying CO_2 degassing from karst fluvial systems is an essential step toward more accurate estimation of global CO_2 evasion from inland waters. By upscaling we can quantify the significance of CO_2 evasions from global karst rivers to the global budget.