Geophysical Research Abstracts Vol. 21, EGU2019-2590, 2019 EGU General Assembly 2019 © Author(s) 2018. CC Attribution 4.0 license.

Identification of N_2O production pathways in estuarine and intertidal sediments

Lijun Hou, Min Liu, Dengzhou Gao, Dianming Wu, Ping Han, Yanling Zheng, and Guoyu Yin East China Normal University, China (ljhou@sklec.ecnu.edu.cn)

Natural isotope abundance technique, combined with acetylene inhibition, was applied to identify the processes responsible for nitrous oxide (N₂O) production in intertidal sediments of the Yangtze Estuary. N₂O production rates varied from 0.70 to 2.15 μ mol m⁻² h⁻¹ in the study area. δ^{15} N, δ^{18} O and SP (intramolecular 15N site preference) of produced N₂O varied from -4.49 to 6.65‰ 42.39 to 53.17‰ and 6.66 to 15.43‰ respectively. Isotopic signatures (SP and δ^{15} N of N₂O) and acetylene inhibition shows that both hydroxylamine (NH₂OH) oxidation (2.42 to 21.78%) and nitrifier denitrification (6.13 to 31.28%) contributed substantially to N₂O production, although denitrification was the dominant pathway (56.38 to 82.15%) of generated N₂O. Sediment water filled pore space, grain size, pH, salinity, Fe²⁺/Fe³⁺ and substrate availability were the primary factors influencing N₂O production. These results improves our understanding about the N₂O dynamics in estuarine and intertidal wetlands.