Geophysical Research Abstracts Vol. 21, EGU2019-3396, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

CDOM photodegradation: Implications for the oceanic methane paradox

Huixiang Xie, Yijie Li, Yong Zhang, and Lantao Geng

Université du Québec à Rimouski, Institut des sciences de la mer de Rimouski, Canada

Photoproduction of methane (CH₄) from DOM was detected in water samples collected from peat ponds, rivers, estuaries, and coastal and open oceans. The rates of CH₄ photoproduction under solar-simulated irradiation were 259 pmol L⁻¹ h⁻¹ in peat pond water, 14-22 pmol L⁻¹ h⁻¹ in river water, 3-7 pmol L⁻¹ h⁻¹ in estuarine and coastal water, and 1-2 pmol L⁻¹ h⁻¹ in offshore water. The production rate was positively correlated to the sample's initial chromophoric DOM absorbance (A_{CDOM}) and dissolved organic carbon (DOC) concentration, whereas the ratios of CH₄ production to A_{CDOM} and DOC losses (CH₄/A_{CDOM} and CH₄/DOC) were inversely related to the initial A_{CDOM} and DOC, implying that marine DOM is more efficient than terrigenous DOM in terms of CH₄ production per unit loss of A_{CDOM} or DOC. CH₄/A_{CDOM} at the wavelength of 330 nm ranged from 0.2 to 1.5 m μ mol L⁻¹ and CH₄/DOC from 0.0006% to 0.02%. The CH₄/DOC translates to (0.6-24) × 10⁷ mol CH₄ yr⁻¹ photoproduced in global inland waters and (4.8-29) × 10⁹ mol CH₄ yr⁻¹ in the open ocean based on published estimates for CO₂ photoproduction in inland and open-ocean waters. The open-ocean CH₄ photoproduction term is comparable to the estimated oceanic CH₄ outgassing rates and upper-ocean microbial consumption rates and thus a potentially important contributor to maintaining CH₄supersaturation in the oxic surface ocean (i.e. the oceanic methane paradox). Several methylated compounds were identified as potential precursors of the photoproduced CH₄.