Geophysical Research Abstracts Vol. 21, EGU2019-3546, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

Synthesis of bismuth functionalized graphene oxide and application for removal of radioactive iodine

Wooyong Um and Sangsoo Han

Pohang University of Science and Technology, Pohang, Korea, Republic Of (wooyongum@postech.ac.kr)

We have successfully synthesized bismuth-functionalized graphene oxide (Bi-GO) and tested for radioactive iodine (iodide and iodate) removal efficiency from radioactive wastewater. Bismuth on the graphene oxide surface was characterized using SEM, XRD, FT-IR, and XPS analyses and confirmed the presence of iodine species on the Bi-GO surfaces. Dominant iodine surface species are BiOI and Bi(IO₃)3(H₂O)2 after iodide and iodate removal experiment, respectively. During the selectivity test using difference background solutions with varying concentrations, Bi-GO still showed higher removal efficiencies ($\geq 95\%$) for both iodide and iodate than the commercial silver-exchanged zeolite ($\geq 95\%$ for iodide and $\leq 25\%$ for iodate), which provides insights of a potential application for selective removal of both iodide and iodate contaminants from radioactive wastewater.