Geophysical Research Abstracts Vol. 21, EGU2019-3611, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

Fates of fertilizer nitrogen and gaseous N loss in maize fields in China

Yunting Fang (1), Chenxia Su (1,4), Zhi Quan (1), Weixing Zhu (1,2), and Yi Shi (3)

(1) CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, 110016, China, (2) Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, (3) CAS Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang 110016, China, (4) College of Sources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China

Maize (*Zea mays L.*) is one of most important crops in China, and its cultivation increased rapidly in the last decades. High doses of nitrogen (N) fertilizers are widely applied for high grain yield. Quantifying the fates of fertilizer N, especially the use efficiency by aboveground biomass (NUE) and their losses to the environment and the atmosphere, is critical for local agricultural management. However, up to now, it is not clear on fate of N fertilizer and how much the applied nitrogen is lost, particularly by the various forms of gaseous N.

We have conducted six new 15 N tracer experiments and combined previous results to evaluate the fates of N fertilizer in maize cropping systems across China. In order to accuracy evaluate the gaseous N loss, a fully automated measuring system was built to simultaneously measure soil N₂O and NO emissions in 2017 and 2018 for a typical maize filed in Northeast China; to identify the source (soil N or fertilizer N) of gases of NO, N₂O and NH₃, another field experiment was conducted in the adjacent field using 15 N-labeled fertilizer.

We found that, on average, 34%, 35% and 31% of the applied N fertilizer (averagely 222 kg N ha⁻¹, n = 23) was taken up by crop, retained in the soil and lost to the environment, respectively. The results of the automated measuring system showed that the release rates of NO and N₂O were 9.1 and 2.6 kg N ha⁻¹ in 2017, 2.6 and 2.2 kg N ha⁻¹ in 2018, respectively. Relatively high NO emission rate in 2017 might been caused by relatively low annual precipitation in that year (437 mm in 2017 and 581 mm in 2018). The results of the static chamber system showed that the release rates of NH₃, NO and N₂O during the maize growing period were only 1.6, 1.8 and 1.4 kg N ha⁻¹, respectively, while NO and N₂O emission using this method being much lower compared to the auto system with high resolution. ¹⁵N labeling experiment showed that 67%, 52% and 29% of the released NH₃, NO and N₂O came from the applied fertilizer N. Seasonal patterns of soil NO and N₂O emissions were similar, indicating they were controlled by similar factors. Among the factors, soil temperature and moisture were significantly related to the emissions of NO and N₂O, and soil temperature was significantly controlling the NO/N₂O ratio in this study site.

Key words: nitrogenous gases losses, maize crop, nitrogen fertilization, ¹⁵N trace, nitrogen use efficiency (NUE)