Geophysical Research Abstracts Vol. 21, EGU2019-4029, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

Grace3D - exploiting LISA Pathfinder technology for gravity field recovery

Matthias Weigelt (1), Vitali Müller (2), Gerhard Heinzel (2), Karsten Danzmann (2), and Balaji Devaraju (3) (1) Leibniz Universität Hannover, Institut für Erdmessung, Hannover, Germany (weigelt@ife.uni-hannover.de), (2) Albert-Einstein-Institut, Hannover, Germany, (3) Department of Civil Engineering, IIT Kanpur, Kalyanpur, India

GRACE-type satellite missions provide along-track inter-satellite ranging information. Evaluating the variations in the ranging information allows to recover the gravity field and its temporal variations. Due to its orbit configuration and along-track observation, the satellites are orbiting the Earth nearly in North-South direction resulting in nearly no sensitivity in the East-West and radial direction. However, the acceleration approach builds a theoretical framework which allows to retrieve information equation can be expressed in the inertial frame as a full three-dimensional quantity. Practically it requires the observation of the baseline angular velocity vector with nano- to picoradiant per second precision which cannot be achieved with star cameras onboard GRACE and GRACE-FO. However utilizing LISA Pathfinder technology, it is possible to provide three angular accelerations by a gravitational reference sensor which describes the rotation of the satellite frame w.r.t. the inertial space. The benefit of the approach is a strongly reduced striping and improved overall performance of a GRACE-type mission.