Geophysical Research Abstracts Vol. 21, EGU2019-4332, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

HDO and SO_2 thermal mapping on Venus : Statistical analysis of the SO_2 plumes

Thomas Widemann (1,2), Thérèse Encrenaz (1), Thomas Greathouse (3), Emmanuel Marcq (4), Hideo Sagawa (5), Bruno Bézard (1), Thierry Fouchet (1), Franck Lefèvre (6), Sébastien Lebonnois (7), Sushil Atreya (8), Yeon Joo Lee (9), Rohini Giles (10), and Shigeto Watanabe (11)

(1) Paris Observatory, LESIA, Meudon, France (thomas.widemann@obspm.fr), (2) Université Paris-Saclay, DYPAC, Guyancourt, France, (3) Southwest Research Institute, Austin TX, (4) Université Paris-Saclay, IPSL, LATMOS, Guyancourt, France, (5) Kyoto Sangyo University, Kyoto, Japan, (6) Sorbonne Université, IPSL, LATMOS, Paris, France, (7) Laboratoire de Météorologie Dynamique (LMD/IPSL), Sorbonne Université, ENS, Ecole Polytechnique, CNRS, Paris, France, (8) University of Michigan, Ann Arbor, MI, (9) Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Japan, (10) Jet Propulsion Laboratory, NASA/Caltech, Pasadena, CA, (11) Hokkaido University, Sapporo, Hokkaido, Japan

Since January 2012, we have been monitoring the behavior of sulfur dioxide and water on Venus, using the TEXES (Texas Echelon Cross-Echelle Spectrograph) imaging spectrometer at the NASA InfraRed Telescope Facility (IRTF, Mauna Kea Observatory). We present here the observations obtained in January 2016, December 2016, January 2017, July 2017, July 2018 and September 2018. As in the case of our previous observations (Encrenaz et al. 2012, 2013, 2016), data have been recorded in two spectral ranges around 1345 cm-1 (7.4 μ m) and 530 cm-1 (18.9 μ m). At 7 μ m, SO₂, CO₂ and HDO (used as a proxy for H₂O) are observed, and the cloudtop of Venus is probed at an altitude of about 64 km. We concentrate here on the 7.4 μ m data. The volume mixing ratio of SO₂ is estimated using the SO₂/CO₂ line depth ratios of weak transitions; the H₂O volume mixing ratio is derived from the HDO/CO2 line depth ratio, assuming a D/H ratio of 200 times the Vienna Standard Mean Ocean Water (SMOW) value. As reported in our previous analyses, the SO₂ mixing ratio shows strong variations with time and also over the disk, which is an indication of the formation of SO_2 plumes with a lifetime of a few hours. In contrast, the H₂O abundance is remarkably uniform over the disk and shows moderate variations as a function of time. We have performed a statistical analysis of the behavior of the SO₂ plumes, using all TEXES data between 2012 and 2017. They appear to be located largely around the equator. Their distribution as a function of local time seems to show a depletion around noon. The distribution of SO_2 plumes as a function of longitude shows no clear pattern, apart from a possible depletion around 100E-150E and around 300E-360E. We see no clear correlation or anti-correlation between the SO2 and H2O abundances at the cloudtop, neither in the individual maps nor over the long term. Finally, there is a good agreement between the TEXES results and those obtained in the UV range (SPICAV/Venus Express and UVI/Akatsuki), which shows that SO₂ observations obtained in the thermal infrared can be used to extend the local time coverage of the SO₂ measurements obtained in the UV range.