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Is there a speed limit for the thermal steady-state assumption in
continental rifts?
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Data-driven thermostructural modelling of the lithosphere is a key approach to deduce the subsurface temperature
field and rheological state of crust and mantle by integrating gravity, seismic, seismological, and lithological data
sets. Such predictive models are mostly based on the assumption that the lithospheric temperature field resides in
a thermal steady-state which is well-justified within non-deforming plate interiors. However, the validity of this
assumption must be limited when considering active plate boundaries where the temperature field is affected by
the advection of heat during lithosphere deformation, a process that we hypothesize to exert more control at higher
deformation rates.

Here we test this hypothesis by focusing on continental rift dynamics using the finite element geodynamic
code ASPECT. In order to account for a range of narrow and wide rift configurations, we model the dynamic
rift evolution of setups with 4 crustal thicknesses (20, 30, 40, and 50 km), each of them extended at 11 different
rift velocities (0.5-10 mm/yr). Our model setups account for four layers (sublithospheric mantle, lithospheric
mantle, lower crust, upper crust) that deform in a visco-plastic manner. After a total extension of 50 km and 100
km, we extract the current lithospheric configuration and compute the purely conductive thermal steady-state.
These steady-state subsurface temperatures are calculated based on individual layer thicknesses and their thermal
properties, while thermal inheritance from the rifting process is neglected. By comparing key observables of these
steady-state snapshots (i.e. the depth of the 100, 200, 300, and 400°C isotherms and the depth of the deepest
brittle-ductile-transition) to those of the transient thermomechanical models, we finally assess the suitability of
steady-state modelling approaches in continental rift settings.

We find that wide rifts, where local advection rates are much slower than in narrow rifts, reside in a ther-
mal steady-state for all tested rift velocities. In narrow rift configurations, however, our hypothesis of a speed limit
for the thermal steady-state assumption can be clearly verified for all observables. Assuming vertical uncertainties
of +/- 5 km for all our observables (isotherms and brittle-ductile transition), we deduce that at a total extension
of 50 km the steady-state approach in narrow rift settings is suitable for extension velocities smaller than ~2-3
mm/yr. At 100 km of extension, the rift velocity can be as fast as ~2-5 mm/yr depending on the observable and
crustal thickness. We conclude that slow rifts like the Kenya Rift, Rhine Graben, and Rio Grande Rift as well as
wide rifts like the Basin and Range Province lie within the steady-state limits. Contrastingly, narrow and relatively
fast rifts like the Afar rift segments, the Red Sea, and the Gulf of Corinth must be expected to feature a pronounced
transient component in the temperature field and therefore to violate the thermal steady-state assumption.



