Geophysical Research Abstracts Vol. 21, EGU2019-4439, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

Spatial and temporal dynamics of $\ensuremath{\text{pCO}}_2$ and $\ensuremath{\text{CO}}_2$ flux in tropical Lake Malawi

Maxon Ngochera

Monkey Bay Fisheries Research, Department of Fisheries, Mangochi, Malawi (ngochera@gmail.com)

Numerous studies have documented CO2 dynamics in temperate lakes, but only a handful of such studies have been conducted on tropical lakes. In this study, spatial and seasonal variation of air and water pCO₂, along with supporting limnological and meteorological variables, were measured along the north-south axis of Lake Malawi aboard a vessel of opportunity. These measurements were used to estimate annual net lake-air CO₂ flux and infer mechanisms regulating it. Lake surface pCO_2 and CO_2 flux varied significantly with season and location. Temporally, the lake was CO₂ undersaturated during the rainy season (December–March) and the mixing season (July–September), while it was CO_2 supersaturated at the onset of the mixing season (May) and during the stratified season (October). Concurrent measurements of lake thermal structure, weather conditions, phytoplankton biomass and seston $\delta 13C$ suggest that increased nutrient supply due to vertical mixing and allochthonous nutrient inputs promotes high phytoplankton growth rates and net CO_2 uptake during the mixing and rainy seasons. Unlike the rest of the lake, the southernmost region of the lake was usually CO₂ supersaturated, even though phytoplankton productivity is highest in this region. While the upwelling of hypolimnetic water at the southern end of the lake is a major source of nutrients that drive phytoplankton photosynthesis and CO₂ uptake, the CO₂ introduced in upwelled water appears to overwhelm the photosynthetic capacity of the lake, especially at the onset of the mixing season. Over an annual cycle, the lake appears to be a net CO_2 sink with a mean CO_2 flux from the atmosphere to the lake of 1,005±99 mmol C m-2 yr-1. This contrasts with observations for many temperate lakes and may be due to the efficiency of phosphorus recycling in Lake Malawi.