A 500-year multi-proxy drought reconstruction for the Czech Lands

Petr Dobrovolný (1,2), Rudolf Brázdil (1,2), Miroslav Trnka (2,3), Michal Rybníček (2,4), Tomáš Kolář (2,4), Martin Možný (5), Tomáš Kyncl (6), Ulf Büntgen (1,2,7)

(1) Department of Geography, Masaryk University, Brno, Czech Republic (dobro@sci.muni.cz), (2) Global Change Research Institute CAS, Brno, Czech Republic, (3) Department of Agrosystems and Bioclimatology, Mendel University, Brno, Czech Republic, (4) Department of Wood Science, Mendel University, Brno, Czech Republic, (5) Doksany Observatory, Czech Hydrometeorological Institute, Doksany, Czech Republic, (6) Moravian Dendro-Labor, Brno, Czech Republic, (7) Department of Geography, University of Cambridge, United Kingdom

Four different moisture-sensitive proxy series from the territory of the Czech Republic are used for quantitative reconstruction of drought via Z-index over the last 500 years. Two tree-ring width series, grape harvest dates and precipitation indices derived from documentary data were combined using Principle Component Analysis. It was found that the first component described 55% of overall variability of four original proxy series. Using simple linear regression the component scores were calibrated to April–July measured Z-index values in the 1805–1854 overlapping period reaching 70% of the common variance explained. Good reconstruction skill was proved with numerous independent calibrations randomly selected from the full overlapping period; all of them providing highly positive RE and CE verification statistics. Moreover, it was proved that the relatively short 50-years long calibration period covering early instrumental data (1805–1854) does not influence the quality of reconstruction. It is demonstrated that the new regression-based reconstruction does not significantly reduce the variability of original proxy series and it does not underestimate significantly dry extremes. New Z-index reconstruction is characterized by a considerable inter-annual and inter-decadal variability with no long-term trends. The driest (1616) and the wettest (1713) years match previously published hydroclimate reconstructions from the same region, whereas the driest and wettest 30-year periods occurred in 1998–2017 and 1890–1919 respectively. Thus central Europe has recently experienced the most severe decadal-scale late spring–early summer drought of the past 500 years. The new multi-proxy drought reconstruction demonstrates progress beyond previous single-proxy attempts as for the strength of hydroclimate signal.