

Estimates of Lightning NO_x Production based on High Resolution OMI NO_2 Retrievals over the Continental US

Xin Zhang (1), Yan Yin (1), Ronald van der A (2), and Jeff L. Lapierre (3)

(1) Nanjing University of Information Science and Technology, Nanjing, China (xinzhang1215@gmail.com), (2) KNMI, De Bilt, Netherlands, (3) Earth Networks, Germantown, MD, USA

Lightning is an important source of nitrogen oxides ($NO_x = NO + NO_2$) in the upper troposphere, with strong impact on ozone and the hydroxyl radical production. However, the production efficiency (PE) of lightning nitrogen oxides (LNO_x) is still quite uncertain (32 – 700 mol NO per flash). Satellites measurements are a powerful tool to estimate LNO_x directly as compared to conventional platforms. To apply satellite data without geographic restrictions, a new algorithm for calculating LNO_x has been developed based on the new Berkeley High Resolution (BEHR) v3.0B NO₂ satellite product and the WRF-Chem model. We estimate LNO_x PE over continental US using the NO₂ product and Earth Networks Total Lightning Network (ENTLN) data. The sensitivity of modeled profile shape, background NO₂ and thunderstorm location is evaluated. Furthermore, we explore the relationship with the cloud vertical structure, flash rates and LNO_x .