

“ORION” – the versatile Full-vector Sample Magnetometer for Paleointensity, Rock Magnetic and Paleomagnetic Studies

Mikhail Smirnov (1), Andrey Sychev (1), Natalia Salnaia (2), Pavel Minaev (2), Vladislav Powerman (2,4,5), Roman Veselovskiy (2,3)

(1) Geophysical Observatory “Borok”, Russian Federation (ramzesu-info@ya.ru), (2) Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, (3) Lomonosov Moscow State University, Geological Dept., (4) Institute of Earth’s Crust SB RAS, (5) Viktor de Terra Ltd. (sales@viktordeterra.ru)

We present “ORION” – the 3-axis top-of-the-edge multifunctional device for rock magnetic, paleomagnetic, archeomagnetic and paleointensity studies, constructed and assembled in the Geophysical Observatory “Borok”, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences. A very similar device, the so-called Triaxe, was independently constructed by Maxim Le Goff in Paris (Le Goff and Gallet, 2004). The long-term usage of ORION magnetometers proved their reliability and extreme help in laborious archeo- and paleointensity, rock magnetic and paleomagnetic experiments. Some of exciting features of ORION are: (a) recording full behavior of the remanent magnetization (NRM/TRM/IRM) vector in the temperature range of 20-750°C: XYZ components of the remanent magnetization are measured simultaneously, without the need for sample position changing; (b) recording full-vector of the remanent magnetization as a function of temperature in the presence of magnetic field in any direction, selected by user; (c) thermal remanent magnetization (TRM) acquisition in a sample in any direction; (d) conducting Thellier-Coe (Thellier, Thellier, 1959; Coe, 1967) and Wilson (Wilson, 1962) experiments for determining the value of the Earth’s ancient magnetic field in fully automatic regime; (e) can be easily programmed for any experiment including a heating, cooling, annealing, etc. in any order.

ORION combines a water-cooled furnace, controlled DC-field, and ultra-sensitive magnetic sensors for full-vector measuring. The instrument is placed into a three-layer permalloy magnetic shield. The interface is a Windows-based user-friendly software with plain scripting language.

Below are some specifications of ORION magnetometer:

(1) magnetic moment sensitivity: 5E-08 Am2; (2) magnetic field range: -200 .. +200 μ T (-160 .. +160 A/m); (3) heating temperatures range: +25 .. +800°C; (4) heating/cooling rate: 0.2 .. 2.0°C/sec; (5) shape of specimens: \sim 1 ccm cube or cylinder; (6) Windows-based software allows step-by-step set-up of fully automated routine measurements procedures (Thellier-Coe with check-points, Wilson); (7) water-cooled (\sim 0.5 L/min); (8) wall-mounted construction.

This work is supported by the grant of the RF President (MD-1116.2018.5) and by the state assignment of GO “Borok” of the IPE RAS (#0144-2014-00117).

References:

- 1) Coe R.S., Paleointensities of the Earth’s magnetic field determined from tertiary and quaternary rocks. *J. Geophys. Res.*, 1967, vol. 72, pp. 3247-3262.
- 2) Le Goff, M., Gallet, Y., 2004. A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: Applications to paleo- and archeo-intensity determinations. *Earth Planet. Sci. Lett.* <https://doi.org/10.1016/j.epsl.2004.10.025>
- 3) Thellier E., Thellier O. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique // *Ann. Geophys.* 1959. V. 15. P.285–378. R. Veitch, I. Hedley, J. Wagner, An investigation of the intensity of the geomagnetic field during Roman times using magnetically anisotropic bricks and tiles, *Arch. Sci.* 37 (1984) 359–373.
- 4) Wilson R.L., 1962. An instrument for measuring vector magnetization at high temperatures. *Geophys. J.* pp. 125-130.