Geophysical Research Abstracts Vol. 21, EGU2019-6583, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

Laser based technique for CO₂ flux measurements

Danijela Smajgl and Magda Mandic

Thermo Fisher Scientific, Bremen, Germany (danijela.smajgl@thermofisher.com)

The isotopic composition of CO_2 has been widely used for studying ecosystem gas exchange. The carbon isotope ratio and oxygen isotope ratio of atmospheric CO_2 (δ 13C; δ 18O) can be used to partition the gross fluxes of CO_2 in terrestrial ecosystems, such as plant respiration, soil respiration, and plant assimilation, as well as a tool for studying ocean-atmosphere interactions.

The characteristic $\delta 13C$ value is modified by plant metabolism and photosynthesis, while the $\delta 18O$ is affected by the oxygen exchange between the molecules of CO₂ and H₂O which originate from different water pools.

Here we present a new possibility for monitoring of CO₂ fluxes, Thermo ScientificTM Delta RayTM spectrometers. Instrumentation is based on direct absorption spectroscopy and it uses mid-infrared laser that operates at 4.3 μ m. The laser scans over the spectral region containing four CO₂ absorption lines and isotope ratios are calculated from the spectrum fit. Calculation of different CO₂ isotopologues and determination of stable isotope ratios from spectroscopy, the calculated isotope ratios are highly dependent on the CO₂ concentration. Therefore, for maximal accuracy of the measurements, instrument has a possibility to adjust the concentration of reference gas to match the concentration of the sample gas. This technology enables the simultaneous determination of δ 13C, δ 18O and CO₂ concentration with a precision better than 0.05‰ With measurement resolution of seconds, it is a great tool for monitoring quick changes in open systems and provides new insights into CO₂ fluxes.