Geophysical Research Abstracts Vol. 21, EGU2019-6992, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license.

The high-frequency monitoring results revealing soil CO_2 contributing to the cave-air CO_2 ——a case study from Xueyu Cave, SW China

Min Cao, Yongjun Jiang, Jiaqi Lei, Qiufang He, and Jiaxin Fan Southwest University, School of Geographical Sciences, Chongqing, China (smilecaomina@hotmail.com)

Cave CO_2 plays an important role in carbon cycle in a karst system, which also largely influences the formation of speleothems in caves. The partial pressure of CO_2 (p CO_2) of the cave air and cave stream in Xueyu Cave was monitored from 2015 to 2016. The p CO_2 variations in cave air and stream over two years showed very similar trend in seasonal patterns, with fluctuated high CO_2 concentrations in the wet season and steady low CO_2 concentrations in the dry season. Soil CO_2 which is largely controlled by soil temperature and soil water content as well as stream degassing are main origins for the Xueyu cave air p CO_2 . Moreover, the contribution from soil CO_2 is higher in June (78.8%) than in November (67.1%) using the model of carbon stable isotopes. Stream p CO_2 degases from upper stream to downstream in the cave, resulting in slightly decreased p CO_2 but increased carbon isotope values in the downstream. The influence of these regional controls provides a better understanding of modern interaction between cave CO_2 sources, transport paths and mechanisms, which is very useful to reveal environmental and climatic information based on stalagmite records.