Trends of daily peak wind gusts in Australia, 1941-2016

Cesar Azorin-Molina (1,2), Tim R. McVicar (3,4), Jose A. Guijarro (5), Blair Trewin (6), Andrew J. Frost (7), Lorenzo Minola (1), Gangfeng Zhang (1,8,9), and Deliang Chen (1)

(1) University of Gothenburg, Department of Earth Sciences - Regional Climate Group, Gothenburg, Sweden (cesar.azorin-molina@gu.se), (2) Centro de Investigaciones sobre Desertificacion, Consejo Superior de Investigaciones Cientificas (CIDE-CSIC), Montcada, Valencia, Spain, (3) CSIRO Land and Water, Canberra, ACT, Australia, (4) Australian Research Council Centre of Excellence for Climate System Science, Sydney, Australia, (5) State Meteorological Agency (AEMET), Balearic Islands Office, Palma de Mallorca, Spain, (6) Australian Bureau of Meteorology, Melbourne, Australia, (7) Australian Bureau of Meteorology, Sydney, Australia, (8) State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China, (9) Academy of Disaster Reduction and Emergency Management, Ministry of Civil Affairs and Ministry of Education, Beijing Normal University, Beijing 100875, China

Daily Peak Wind Gust (DPWG) time series are important for the evaluation of wind-related hazard risks to different socioeconomic and environmental sectors. Yet wind time series analyses can be impacted by several artefacts, such as anemometer changes and site location changes, both temporally and spatially, that may introduce inhomogeneities that mislead the study of their decadal variability and trends. A previous study (EGU2018-14546) presented a strategy in the homogenization of this challenging climate extreme such as the DPWG using 548 time series across Australia for 1941-2016. The automatic homogenization of this DPWG dataset was implemented in the recently developed version 3.1 of the R package Climatol which: (i) represents an advance in homogenization of this extreme climate record; and (ii) produced the first homogenized DPWG dataset to assess and attribute long-term variability of extreme winds across Australia. Given the inconsistencies of wind gust trends under the widespread decline in near-surface wind speed (stilling), the aim of this study is to analyze DPWG trends in Australia for 1941-2016, with particular focus on: (i) the frequency (90th percentile); and (ii) the magnitude (wind speed maxima) of DPWG. Station-based DPWG trends at 548 sites, and regional DPWG trends will be reported at different spatio-temporal scales: i.e. annual, seasonal and monthly. Large-scale atmospheric circulation changes will be analyzed to quantify the role played in the observed DPWG trends and multi-decadal variability.