Application of planar optodes to measure CO₂ gradients in the rhizosphere of unsaturated soils

Maire Holz (1), Joscha N. Becker (2), Eva Oburger (3), and Gabrielle Daudin (4)

(1) Group of Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., Müncheberg, Germany, (2) Division of Physical Geography, University of Goettingen, Goettingen, Germany, (3) BOKU - University of Natural Resources and Life Sciences, Department of Forest and Soil Sciences, Rhizosphere Ecology and Biogeochemistry Group (RHIZO), Vienna, Austria, (4) Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France

Soil CO₂ efflux is a major pathway in the global C cycle and comprises root respiration as well as microbial respiration. Soil respiration is therefore tightly linked to root activity and C release from roots as root exudates are rapidly decomposed by soil microorganisms. As the rhizosphere is characterized by high C turnover rates and high spatial variability of processes, a method is needed to account for this spatial and temporal variability of CO₂ production in the rhizosphere. Planar optodes were previously applied to measure the distribution of pH and O₂ in the rhizosphere. So far, CO₂ measurements were only a few times successfully conducted in saturated soils, although the importance of soil CO₂ respiration is usually higher under aerobic conditions. We therefore tested whether planar optodes can be applied to measure CO₂ in the rhizosphere of unsaturated soils.

Maize (zea mays) plants were grown in 5 rhizoboxes filled with sandy soil. After four weeks, planar optodes sensitive to CO₂ (PreSens GmbH, SF-CD2R - range: 0 – 1 % pCO₂) were attached to the rhizosphere surface. We selected 2-5 positions with visibly growing roots per box and attached 20-40 cm² optodes at each position. The CO₂ concentration was measured at three different volumetric soil water contents (VWC), a) 21%, b) 28% and c) after saturation at 38%. The change of CO₂ signal was monitored over a period of 15 hours after saturation of samples to test the optode equilibration time. The obtained images were calibrated and analyzed using ImageJ v. 1.51 (NIH).

Gradients of CO₂ were clearly visible around root tips. Around mature root parts, the increase of CO₂ was only half as strong as for young root parts, likely due to high root respiration in the growing root parts and due to microbial decomposition of root exudates. The equilibration time for the rhizosphere was 10 hours, while in bulk soil equilibrium was not reached after 15 hours. This suggests that optodes should be attached to samples and equilibrated for at least 15 hours prior to measurements. Soil moisture had a strong effect on the measured CO₂ concentration. For 21% VWC the average CO₂ concentration was 0.23 µmol CO₂ l⁻¹ while it was 0.38 µmol CO₂ l⁻¹ for 28% VWC and increased to 1.47 µmol CO₂ l⁻¹ after saturating the samples to 38% VWC. For 28% and 38% VWCs, CO₂ gradients were clearly visible around the roots, while no gradients were detectable at VWC of 21%. This is likely due to the increased diffusion of CO₂ into the optodes under higher VWC. Statistical comparisons between VWC levels were highly sensitive, indicating that small changes in soil WC will greatly affect the measured CO₂ concentration and thus may be a strong confounding variable for treatment comparisons in unsaturated soils. However, provided that the soil moisture is kept constant in all samples, optode measurements of CO₂ can be used in moist soil samples to quantify relative differences in CO₂ concentration between treatments.