

Impact of near-surface wind speed variability on wind erosion in the eastern agro-pastoral transitional zone of Northern China, 1982-2016

Gangfeng Zhang (1,2,3), Cesar Azorin-Molina (3,4), Peijun Shi (1,2,5), Degen Lin (1,6), Jose A. Guijarro (7), Feng Kong (8), and Deliang Chen (3)

(1) State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China (zhanggf15@foxmail.com), (2) Academy of Disaster Reduction and Emergency Management, Ministry of Civil Affairs and Ministry of Education, Beijing Normal University, Beijing 100875, China, (3) University of Gothenburg, Department of Earth Sciences - Regional Climate Group, Gothenburg, Sweden, (4) Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas (CIDE-CSIC), Montcada, Valencia, Spain, (5) Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Beijing Normal University, Beijing 100875, China, (6) College of Geography and Environmental Sciences, Zhejiang Normal University, Zhejiang 321004, China, (7) State Meteorological Agency, Delegation of the Balearic Islands, Palma de Mallorca, Spain, (8) Training Center, China Meteorological Administration. Beijing 100081, China

Wind erosion is a serious environmental issue in arid and semi-arid areas over the world, and near-surface wind speed changes play a key role on wind erosion dynamic. Here, the Revised Wind Erosion Equation Model (RWEQ) is applied to simulate the variability of wind erosion and quantify the impact of long-term near-surface wind speed changes on wind erosion over the eastern agro-pastoral transitional zone of Northern China for 1982-2016. Our simulations show a negative trend for the annual soil loss of wind erosion (SLWE, $-6.20 \text{ t hm}^{-2} \text{ year}^{-1}$; $p < 0.05$), with significant ($p < 0.05$) declining trends in all seasons, particularly in spring ($-3.49 \text{ t hm}^{-2} \text{ year}^{-1}$) and autumn ($-1.26 \text{ hm}^{-2} \text{ year}^{-1}$), followed by summer ($-0.85 \text{ t hm}^{-2} \text{ year}^{-1}$) and winter ($-0.52 \text{ t hm}^{-2} \text{ year}^{-1}$). At the same time, the near-surface wind speed decreased significantly ($p < 0.05$) annually ($-0.070 \text{ m s}^{-1} \text{ dec}^{-1}$), with a significant ($p < 0.05$) declining trend in spring ($-0.100 \text{ m s}^{-1} \text{ dec}^{-1}$) and autumn ($-0.092 \text{ m s}^{-1} \text{ dec}^{-1}$), and a non-significant ($p > 0.10$) decreasing trend in winter ($-0.026 \text{ m s}^{-1} \text{ dec}^{-1}$) and summer ($-0.012 \text{ m s}^{-1} \text{ dec}^{-1}$). Further, we exclude the influence of wind speed variability on soil erosion by the model variable control method, which shows that wind speed variability affect wind erosion at $-8.14 \text{ t hm}^{-2} \text{ year}^{-1}$ ($p < 0.05$) annually, with the strongest impacts in spring ($-4.77 \text{ t hm}^{-2} \text{ year}^{-1}$, $p < 0.05$), followed by autumn ($-1.44 \text{ t hm}^{-2} \text{ year}^{-1}$, $p < 0.05$) and winter ($-1.42 \text{ t hm}^{-2} \text{ year}^{-1}$, $p < 0.05$). Meanwhile, a weak and significant ($p < 0.10$) opposite influence is found in summer ($+0.40 \text{ t hm}^{-2} \text{ year}^{-1}$). Long-term wind erosion studies are rather limited and deserve more attention due to its socioeconomic and environmental impacts.