Laser texturing to increase the hydrophobicity of marble

Ana J. López (1), Alberto Ramil (2), José Santiago Pozo-Antonio (3), Teresa Rivas (4), and Dolores Pereira (5)
(1) Departamento de Enxeñaría Naval e Industrial, Universidade de Coruña, 15471 Ferrol, Spain (ana.xesus.lopez@udc.es),
(2) Departamento de Enxeñaría Naval e Industrial, Universidade de Coruña, 15471 Ferrol, Spain, Universidade de Coruña,
15471 Ferrol, Spain (alberto.ramil@udc.es), (3) Departamento de Enxeñaría de Recursos Naturais e Medio Ambiente,
Universidade de Vigo, 36310 Vigo, Spain (ipozo@uvigo.es), (4) Departamento de Enxeñaría de Recursos Naturais e Medio
Ambiente, Universidade de Vigo, 36310 Vigo, Spain (trivas@uvigo.es), (5) Departmento de Geología, Universidad de
Salamanca, 37008 Salamanca, Spain

Conservation strategies to limit the degradation of stone due to the access of water are being constantly developed.
In this sense, new products and procedures have been recently designed to enhance the hydrophobicity of stone
(Camaiti et al., 2017; Frigione et al., 2018). However, some of these products can present serious drawbacks, such
as human health and environmental risks in addition with colour modifications and reduction of vapor permeability
above the threshold which is recognized as high risk for interventions in cultural heritage. Laser texturing of a
surface consists in making geometrical structures through ablation processes, in order to change the surface relief
on a micro-metric or even nano-metric scale to meet a specific functional requirement, such as modification of the
wettability of the rock surface (Chantada et al., 2017).

In this work, preliminary results of laser texturing of a marble from the Iberian Peninsula are presented. Surface
treatments were performed using ultra-short pulse laser and the objective was to find the optimal processing
parameters to increase the hydrophobicity of the surface. In this sense, different patterns consisting of matrices of
points or line arrays were tested.
Characterization of the treated surfaces was performed by means of stereomicroscopy, scanning electron mi-
croscopy and measurement of both roughness and colour parameters. The hydrophobicity of the processed marble
was assessed by contact angle measurements.

Acknowledgments: This work was partially supported by Spanish Government Research Project BIA2017-
85897

REFERENCES
Camaiti, M.; Brizi, L.; Bortolotti, V.; Papacchini, A.; Salvini, A.; Fantazzini, P. An Environmental Friendly
Fluorinated Oligoamide for Producing Nonwetting Coatings with High Performance on Porous Surfaces.ACS
Frigione, M.; Lettieri, M. Novel Attribute of Organic–Inorganic Hybrid Coatings for Protection and Preservation
the hydrophobicity degree of stonework by means of laser surface texturing: An application on Zimbabwe black