

Mineral chemistry and U-Th-Pb monazite geochronology of metapelites from Lower Himalaya-Higher Himalaya interface, India

Hifzur Rahman and Pritam Nasipuri

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH BHOPAL, DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES, BHOPAL, India (pritams@iiserb.ac.in)

Well-constrained geological, structural, geochemical and isotopic data from different parts of the Himalaya indicate the presence of four tectonic domains: a) the Sub-Himalayan Zone (SH); b) the Lower Himalaya (LH); c) The Higher Himalaya crystalline (HH) sequences and d) the Tethyan Himalaya (TH). The Lesser Himalayan rocks represent remnants of continental crust of Greater Indian. An event of high-temperature metamorphism of these rocks at ~ 20 Ma is constrained from U-Pb zircons dates from leucogranites emplaced in HH rocks. However, the evidence for pre-Himalayan metamorphism about Proterozoic granite emplacement is not well documented from LH rocks. In this contribution, we present new mineral chemical and U-Th-Pb_{total} geochronological data from monazites in mica-schists in LH-HH transect to document evidence of Proterozoic metamorphism in the Himalaya.

Mica schists interbedded with mafic schist/amphibolite is the dominant metasedimentary rocks in the Wangtu Gneissic complex, Sutlej river, Himachal Pradesh. Biotite + Muscovite \pm Garnet \pm Chlorite \pm Sillimanite are the dominant minerals in the metapelite. Quartz is the predominant leucocratic mineral present in the studied samples, although sodic plagioclase is present locally. The metapelites have a well-developed foliation defined by biotite and muscovite. The biotite in the metapelites changes composition from mg#=45-47 in the western part to mg#=65-70 in the eastern part near Wangtu Gneissic Complex. Accordingly, the Ti content in biotite implies an increase in temperature from~ 550°C in the western part too ~ 650°C in the eastern part of the transect.

10-100 μ m monazite grains are dispersed throughout the foliation. Most of the monazite grains show a wide variation in ThO₂content and exhibit patchy and sector zoning. In-situ U-Th-Pb total analysis of monazite exhibit two age cluster. 100 μ m long monazite grains with the long axis oriented parallel to the biotite-muscovite foliation yield mean age 1300 ± 40 Ma. Smaller monazite grains, with elliptical boundary yield, mean age 474±40 Ma. The oldest age is correlated with the emplacement of Paleo/Mesoproterozoic granitic emplacement in the LHC-HHC interface. The Pan-African age is correlated with crustal assembly during Gondwanaland assembly.