

Geochemical investigation of mafic rocks from the Archean Olondo greenstone belt on the Aldan Shield, Siberian Craton

Thi-Duyen Tran (1), Kuo-Lung Wang (2,3), Victor P. Kovach (4), Alexander B. Kotov (4), Sergey Velikoslavinsky (4), Hao-Yang Lee (2), and Li-Wei Kuo (5)

(1) National Central University, Earth System Science, Taiwan International Graduate Program, Taipei, Taiwan, (2) Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, (3) Department of Geosciences, National Taiwan University, Taipei, Taiwan, (4) Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, Moscow, Russia, (5) Department of Earth Sciences, National Central University, Taoyuan, Taiwan

The Olondo greenstone belt locates in the western part of the Aldan Shield, the largest basement of the Siberian craton. This Archean greenstone belt is unique by its abundant mafic-ultramafic rocks (>30%) comparing to other greenstone belts worldwide, and one of the best preserved areas that provide a window into an ancient geological past. In this study, we focus on mafic rocks that underwent greenschist to amphibolite facies metamorphism, composed of hornblende-tremolite-actinolite-chlorite-epidote mineral assemblage. The mafic rocks comprise komatiitic and high-Fe tholeiitic basalts, characterized by variable Mg# (0.44-0.74) representative of both differentiated and near-primary magma. On the basis of chondrite-normalized REE pattern, these basalts are subdivided into two groups. Group I is characterized by flat to slightly enriched LREE ($\text{La/Sm}_N=1.4 - 2.5$; $\text{La/Yb}_N=1.3 - 3.2$) and LILE, as well as depleted in HFSEs (Nb, Ta, Ti), suggesting either their mantle source might be influenced by subduction-related processes or result of crustal contamination. Group II is characterized by depleted LREE pattern ($\text{La/Sm}_N=1.0-1.3$; $\text{La/Yb}_N=0.7-1.8$) with no Nb-Ta depletion, similar to the REE pattern of mid-ocean ridge basalts (MORB). Trace-element modeling suggests the rocks were likely derived by 10-30% partial melting of a depleted mantle or primitive mantle-like source with the melting temperature around 1420-1540°C. The initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratio is between 0.702045 and 0.705961 together with positive initial $\varepsilon_{\text{Nd}_i}$ (+0.09 to +3.91), are indicative of heterogeneous depleted mantle with no significant crustal contamination. The new geochemical data above suggest typical modern tectonic processes such as sea-floor spreading and subduction might be in operation in the Archean time.