Geophysical Research Abstracts Vol. 21, EGU2019-9977, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. ## Diagnosing long-term and short-term changes in ozone production sensitivity to precursor emissions: the view from space Xiaomeng Jin (1), Arlene Fiore (1), and Folkert Boersma (2) (1) Columbia University, Lamont-Doherty Earth Observatory , Earth and Environmental Sciences, United States (xjin@ldeo.columbia.edu), (2) Royal Netherlands Meteorological Institute, De Bilt, The Netherlands (folkert.boersma@knmi.nl) Ambient exposure to ground-level ozone (O₃) is estimated to cause more than 250,000 global premature deaths per year. O_3 is produced from photochemical reactions involving its precursors: nitrogen oxides (NO_x) and volatile organic compounds (VOCs). A major challenge in lowering ground-level O₃ in urban areas is to determine whether O₃ production is limited by NO_x (NO_x-limited) or VOCs (VOC-limited) or both (transitional). While satellites cannot retrieve the abundance of ground-level O₃, they have provided continuous global observations of O₃precursors, namely tropospheric columns of NO2 and formaldehyde (HCHO, a proxy for VOCs), for over two decades. To assess the extent to which satellite retrievals of O₃ precursors can capture the non-linear chemistry of ground-level O3, we pair daily satellite retrievals of NO2 and HCHO from Ozone Monitoring Instrument (OMI) with groundbased observations of surface O₃ from the U.S. EPA Air Quality System (AQS) network. For urban areas, we find O_3 exceedances (> 70 ppbv) are more likely to occur with NO_x reductions (NO_x -saturated or VOC-limited) when OMI HCHO/NO₂ is lower than 1.8, but less likely to occur with NO_x reduction (NO_x-limited) when OMI $HCHO/NO_2$ is higher than 2.8. We further contrast how the O_3 - NO_x -VOC sensitivity differs on high-ozone versus "average" ozone days. Next, we construct 20-year (1996 to 2016) time series of the O₃sensitivity indicator ratio (HCHO/NO₂) using the state-of-art, harmonized multi-satellite products of tropospheric NO₂ and HCHO vertical columns from the Quality Assurance for Essential Climate Variables (QA4ECV) project that retrieves products consistently from four satellites, including GOME, SCIAMACHY, GOME-2 and OMI. We analyze the long-term trend in the ratio of HCHO to NO2 over major cities across the world. Our study aims to demonstrate how satellite HCHO/NO₂ products can complement in-situ O₃networks by providing information on the spatial heterogeneity and long-term evolution of O₃chemical regimes.