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Introduction

The problem of a wave progressing in U-shaped inclined bay was solved by [1] using an
hodograph transform. One peculiarity of this transform is that the width of the wave packet
remains constant in the transformed space. Consequently the reflected wave has the same
shape as the incident wave. That was not the case with Carrier-GreenSpan transform where
the width of the wave packet increases with distorted time λ. Once the wave packet enters
the inland intrusion it can be confined to the bay because of the multiple back reflections by
the mouth of the bay. Because of the preservation of the width of the wave packet during
its travel along the bay the maximum run-ups and run-downs will be produced at a very
regular rate. In general the first the run-up is the largest because some the energy will be
transmitted to the open ocean during the back reflections.
During the back reflection into the bay the polarity of the waves changes. At the instant
of the back-reflection of the front of the N -wave, the tail of the N-wave may enter into the
bay then the superposition of the two waves of the same parity will produce a larger wave
leading to even larger run-ups.
If the aspect ratio of the bay is small then at the early stages of the formation of the standing
waves in the bay , the magnitude scattered wave into the open sea is much smaller that of
the incident wave.This is so because before the fully resonant regime develops in the bay,
the amplitude of the incident wave from the open ocean and that of the standing wave are
of the same order of magnitude. At each oscillation of the standing wave in the bay the
scattered wave transmits to the open sea only a small fraction of the energy of the standing
waves. That is why the amplitude of the scattered wave is much smaller that of the incident
wave. Ignoring the scattered one can impose the Dirichlet boundary condition at the mouth
of the bay. This Dirichlet condition stipulates that the wave height at the mouth of the
bay is equal to the twice of the height of the incident wave. This simplification renders the
problem one dimensional. Because tsunamis are transient phenomenon, there is not enough
time for the resonant regime to set in an the simplified one dimensional model based on the
Dirichlet boundary condition leads to an accurate prediction of the maximum run-up for
slender bays (see figure 2 where comparisons between two and one dimensional models are
made).

Model

An inclined bay with parabolic cross section is considered. The bottom of the bay is given
by
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)
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Here z = 0 is the undisturbed free surface, x0 the length of the bay, and y0 is its half width
at x = x0 (the mouth of the bay). The bay opens to a semi-infinite sea of uniform depth
H0 = αx0 Well inside the bay (x0 − x >> y0) the waves are one dimensional and in the
linear limit they are given by

η = r̃(ω)j0

(
ω
√
gα

√
6x

)
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according to [1]. Here η is the free surface disturbance associated with the wave, j0 is the
spherical Bessel function of the first kind , and, r̃(ω) Fourier transform of run-up as j0(0)
is 1.
In the vicinity the mouth of the bay (x0 − x is of order of y0), the waves feel the effect of
geometrical spreading in the open sea, therefore two dimensional solution must be used in
this region. In this region the relative change of depth in x direction is small accordingly
we will be using the solutions of the linear shallow water equation in the infinite channel
with parabolic cross section.

Because of the bathimetry is independent of x coordinate for the infinite channel, x de-
pendent part of the solution of linear shallow water equation is an eigenfunction of the

differential operator d2

dx2. We may propose for the waves in the infinite channel

η =
∑
p

Bp exp(κp(ω)x− φp)fp(y, ω) exp(iωt) . (3)

The expression above is indeed a solution of the shallow water equation in the infinite
channel if function fp(y, ω) satisfies the ordinary differential equation
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The equation above has two singular points at y = ±y0 and there are solutions regular at
both singular points if continuous parameter κ is equal to some discrete values κ0, κ1, ....
To compute these discrete values of κ and obtain functions fp(y, ω) the matrix of the
ordinary differential equation given by (4) must be written in the basis of even Legendre
polynomials (a solution that is symmetrical about y = 0 is sought). The eigenvalues and
the eigenvectors of the resulting matrix are obtained using algebraic methods. The allowed
values of κ2 may be written in ascending order as

κ2
0 < 0 < κ2

1 < κ2
2 < ..

if ωy0/
√
gH0 is smaller than 2.5 there will only one κ with κ2 negative (see Figure 1).

Phase factor φ0 in (3) will be chosen in a way to insure a smooth transition between our
oscillatory solution exp(κ0(ωx − φ0) and j0(ω

√
6x/
√
gα) (see [1]). Therefore φ0 must

be the root of the wronskian of these two functions for x = x0. It is convenient to take
φp = κpx0 for p = 1, 2.. so that the exponentially decaying functions exp(κpx− φp) take
the value 1 at the mouth of the bay. The scattered wave into open sea together with the
incident wave and the wave reflected by the coastline at x = x0 reads

η(t, x > x0, y) = 2Ĩ0(ω) cos
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for ω > 0. Here H
(2)
0 is Hankel function of the second kind order 0, Ĩo(ω) is the amplitude

of the incident wave, and function S is the virtual source distribution at the mouth of the
bay. The continuity of depth integrated velocity in x direction at x = x0 requires that
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(6)

From equation above source distribution S is related to coefficients B0(ω), B1(ω), .... The
continuity of η across the mouth of the bay will lead to an integral equation for the
coefficients B0(ω), B1(ω), .... Continuity of η requires that (3) must be equal to (5) for
x → x0. For each frequency the unknown coefficients can be determined minimising the
penalty integral ∫ y0

−y0

dy | lim
x→x+

0

η(x, y, ω)− lim
x→x−0

η(x, y, ω)|2 (7)

with respect to B0(ω), B1(ω), .... Such minimisation lead to algebraic equations for coef-
ficients B0(ω), B1(ω), ....

Simple solutions where the scattered
wave is neglected

When the aspect ratio of bay is small the waves are effectively trapped inside the bay
and the radiation of the waves from the mouth to the open sea is a slow process (it
takes far longer than L/

√
gH0(here L is the width of the incident wave packet). That

makes the amplitude of the scattered wave negligible. The wave height at the mouth
of the bay is then twice the height of the incident wave. The easiest way of solving
this Dirichlet problem using Fast Fourier Transform is to consider an infinite channel
of width 2y0 and uniform depth D connected U-shaped bay.The initial condition is
a wave packet in the infinite channel progressing toward the U-shaped bay. If one
allow D to become infinite than the amplitude the wave radiating from the mouth of
the U-shaped bay into the infinite channel becomes zero. This problem can be easily
solved in Fourier domain taking into account the flux continuity and continuity of η
at the mouth of the bay.The run-up is then
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Here Ĩ(ω) is the Fourier transform of the incident wave with respect to time at
x = x0.
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Fig. 1: The dispersion relation in infinite channel with parabolic cross-section. Broken curves means that wave vector is

purely imaginary (associated modes grow exponentially in +x direction). The stars are the dispersion relation given by

ω =
√
g2H0/3k where 2H0/3 is the averaged depth of the parabolic channel.
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Fig. 2: Continuous curve is run-up as function of time. The aspect ratio of the U-shaped inclined bay is 10 (length

divided by the maximum width). The incident wave packet is a gaussian depression given by

−I0 exp(−(x +
√
gH0t)

2/x20). Parameter t0 is
√

6x0/(αg) (travel time of waves over the U-shape bay). In the broken

curve the semi-infinite sea has been replaced by a semi-infinite channel of depth D = 40αx0 and width 2y0 (2y0 is the

maximum width of the U-shaped bay).
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