An N-wave with a leading depression entering a shoaling bay with a U-shaped cross section

Nazmi Postacioglu and M. Sinan Özeren

Technical University of Istanbul

Introduction

The problem of a wave progressing in U-shaped inclined bay was solved by [1] using an hodograph transform. One peculiarity of this transform is that the width of the wave packet remains constant in the transformed space. Consequently the reflected wave has the same shape as the incident wave. That was not the case with Carrier-GreenSpan transform wher the width of the wave packet increases with distorted time λ. Once the wave packet enter the inland intrusion it can be confined to the bay because of the multiple back reflections by the mouth of the bay. Because of the preservation of the width of the wave packet during its travel along the bay the maximum run-ups and run-downs will be produced at a very regular rate. In general the first the run-up is the largest because some the energy will be transmitted to the open ocean during the back reflections.
During the back reflection into the bay the polarity of the waves changes. At the instant of the back-reflection of the front of the N -wave, the tail of the N -wave may enter into the bay then the superposition of the two waves of the same parity will produce a larger wave leading to even larger run-ups.
If the aspect ratio of the bay is small then at the early stages of the formation of the standing waves in the bay , the magnitude scattered wave into the open sea is much smaller that o the incident wave.This is so because before the fully resonant regime develops in the bay the amplitude of the incident wave from the open ocean and that of the standing wave ar of the same order of magnitude. At each oscillation of the standing wave in the bay the scattered wave transmits to the open sea only a small fraction of the energy of the standing waves. That is why the amplitude of the scattered wave is much smaller that of the inciden wave. Ignoring the scattered one can impose the Dirichlet boundary condition at the mouth hay is equal to the twice of the height of the incident wave. This simplification renders the
 time for the resonant regime to set in an the simplified one dimensional model based on the Dirichlet boundary condition leads to an accurate prediction of the maximum run-up for lender bays (see figure 2 where comarisons between two and one dimensional models are slender bays (see figure 2 where comparisons between two and one dimensional models are made).

Model

An inclined bay with parabolic cross section is considered. The bottom of the bay is given by

$$
\begin{equation*}
z=-\alpha\left(x-x_{0}\left(\frac{y}{y_{0}}\right)^{2}\right) \tag{1}
\end{equation*}
$$

Here $z=0$ is the undisturbed free surface, x_{0} the length of the bay, and y_{0} is its half widt at $x=x_{0}$ (the mouth of the bay). The bay opens to a semi-infinite sea of uniform dept $H_{0}=\alpha x_{0}$ Well inside the bay $\left(x_{0}-x \gg y_{0}\right)$ the waves are one dimensional and in the linear limit they are given by

$$
\begin{equation*}
\eta=\tilde{r}(\omega) j_{0}\left(\frac{\omega}{\sqrt{g \alpha}} \sqrt{6 x}\right) \exp (i \omega t) \tag{2}
\end{equation*}
$$

according to [1]. Here η is the free surface disturbance associated with the wave, j_{0} is the spherical Bessel function of the first kind, and, $\tilde{r}(\omega)$ Fourier transform of run-up as $j_{0}(0)$ is 1 . In the vicinity the mouth of the bay $\left(x_{0}-x\right.$ is of order of $\left.y_{0}\right)$, the waves feel the effect of geometrical spreading in the open sea, therefore two dimensional solution must be used in this region. In this region the relative change of depth in x direction is small accordingly we will be using the solutions of the linear shallow water equation in the infinite channe
with parabolic cross section.

Because of the bathimetry is independent of x coordinate for the infinite channel, x dependent part of the solution of linear shallow water equation is an eigenfunction of the differential operator $\frac{d^{2}}{d x^{2}}$. We may propose for the waves in the infinite channel

$$
\begin{equation*}
\eta=\sum_{p} B_{p} \exp \left(\kappa_{p}(\omega) x-\phi_{p}\right) f_{p}(y, \omega) \exp (i \omega t) . \tag{3}
\end{equation*}
$$

The expression above is indeed a solution of the shallow water equation in the infinite channel if function $f_{p}(y, \omega)$ satisfies the ordinary differential equation

$$
\begin{gather*}
-\omega^{2} f_{p}(y, \omega)-g \kappa_{p}^{2}\left\{\alpha x_{0}\left(1-\frac{y^{2}}{y_{0}^{2}}\right) f_{p}(y)\right\} \tag{4}\\
-g \frac{d}{d y}\left[\alpha x_{0}\left(1-\frac{y^{2}}{y_{0}^{2}}\right) \frac{d}{d y} f_{p}(y, \omega)\right]=0 .
\end{gather*}
$$

The equation above has two singular points at $y= \pm y_{0}$ and there are solutions regular at both singular points if continuous parameter κ is equal to some discrete values $\kappa_{0}, \kappa_{1}, \ldots$. Io compute these discrete values of κ and obtain functions $f_{p}(y, \omega)$ he matrix of the lynomials (a solution that is symmetrical about $y=0$ is sought). The eigenvalues and eigenvector of the resulting matrix are obtained using alvebraic methods. The allowed values of κ^{2} may be written in ascending order as

$$
\kappa_{0}^{2}<0<\kappa_{1}^{2}<\kappa_{2}^{2}<.
$$

if $\omega y_{0} / \sqrt{g H_{0}}$ is smaller than 2.5 there will only one κ with κ^{2} negative (see Figure 1). Phase factor ϕ_{0} in (3) will be chosen in a way to insure a smooth transition between our oscillatory solution $\exp \left(\kappa_{0}\left(\omega x-\phi_{0}\right)\right.$ and $j_{0}(\omega \sqrt{6 x} / \sqrt{g \alpha})$ (see [1]). Therefore ϕ_{0} must be the root of the wronskian of these two functions for $x=x_{0}$. It is convenient to take $\phi_{p}=\kappa_{p} x_{0}$ for $p=1,2$.. so that the exponentially decaying functions $\exp \left(\kappa_{p} x-\phi_{p}\right)$ take the value 1 at the mouth of the bay. The scattered wave into open sea together with the ncident wave and the wave reflected by the coastline at $x=x_{0}$ reads

$$
\begin{align*}
\eta\left(t, x>x_{0}, y\right)=2 \tilde{I}_{0}(\omega) \cos (& \left.\frac{\omega}{\sqrt{g H_{0}}} x\right) \exp (i \omega t) \\
& +\exp (i \omega t) \int_{-y_{0}}^{y_{0}} d y^{\prime \prime} S\left(y^{\prime \prime}, \omega\right) \frac{\omega}{2 g H_{0}} H_{0}^{(2)}\left(\frac{\omega}{\sqrt{g H_{0}}}\left|y-y^{\prime \prime}\right|\right) \tag{5}
\end{align*}
$$

for $\omega>0$. Here $H_{0}^{(2)}$ is Hankel function of the second kind order $0, \tilde{I}_{o}(\omega)$ is the amplitude of the incident wave, and function S is the virtual source distribution at the mouth of the bay. The continuity of depth integrated velocity in x direction at $x=x_{0}$ requires that

$$
\begin{array}{r}
-\frac{g H_{0}}{i \omega}\left(1 .-y^{2} / y_{0}^{2}\right)\left(B_{0} i\left|\kappa_{0}(\omega)\right| \exp \left(i\left|\kappa_{0}(\omega)\right| x_{0}+\phi_{0}\right) f_{0}(y, \omega)+\sum_{p=1}^{M-1} B_{p}\left|\kappa_{p}(\omega)\right| f_{p}(y, \omega)\right. \tag{6}\\
=S(y, \omega) .
\end{array}
$$

From equation above source distribution S is related to coefficients $B_{0}(\omega), B_{1}(\omega), \ldots$. The continuity of η across the mouth of the bay will lead to an integral equation for the coefficients $B_{0}(\omega), B_{1}(\omega), \ldots$. Continuity of η requires that (3) must be equal to (5) for $x \rightarrow x_{0}$. For each frequency the unknown coefficients can be determined minimising the penalty integral

$$
\begin{equation*}
\int_{-y_{0}}^{y_{0}} d y\left|\lim _{x \rightarrow x_{0}^{+}} \eta(x, y, \omega)-\lim _{x \rightarrow x_{0}^{-}} \eta(x, y, \omega)\right|^{2} \tag{7}
\end{equation*}
$$

with respect to $B_{0}(\omega), B_{1}(\omega), \ldots$. Such minimisation lead to algebraic equations for coefficients $B_{0}(\omega), B_{1}(\omega)$,

Simple solutions where the scattered wave is neglected

When the aspect ratio of bay is small the waves are effectively trapped inside the bay and the radiation of the waves from the mouth to the open sea is a slow process (it takes far longer than $L / \sqrt{ } g H_{0}$ (here L is the width of the incident wave packet). That nakes the amplitude of the scattered wave negigible. The wave height at the mout the bay is then twice the height of the incident wave. Fre easiest way of solve of Didth 2 ther wave packet in the infinite channel progressing toward the U-shaped bay If on allow D to become infinite than the amplitude the wave radiating from the mouth he U-shaped bay into the infinite channel becomes zero. This problem can be easily olved in Fourier domain taking into account the fux continuity and continuity of η at the mouth of the bay The run-up is then

$$
r(t)=\lim _{D \rightarrow \infty} \int_{-\infty}^{\infty} d \omega \frac{2 i D \tilde{I}(\omega) \exp (i \omega t)}{-\sqrt{2 / 3} j_{1}\left(\frac{\omega}{\sqrt{g \alpha}} \sqrt{6 x_{0}}\right)+i D j_{0}\left(\frac{\omega}{\sqrt{g \alpha}} \sqrt{6 x_{0}}\right)}
$$

Here $\tilde{I}(\omega)$ is the Fourier transform of the incident wave with respect to time at $x=x_{0}$.

Fig. 1: The dispersion relation in infinite channel with parabolic cross section. Broken curves means that wave vector is purely imaginary (associated modes grow exponentially in $+x$ direction). The stars are the dispersion relation given by $\omega=\sqrt{92 H_{0} / 3} k$ where $2 H_{0} / 3$ is the averaged depth of the parabolic channel

Fig. 2: Contimuous curve is run-up as function of time. The aspect ratio of the U-shapeed inclined bay is 10 lenenth divided by the maximum width). The incident wave packet is a gausian depression given by $-I_{0} \exp \left(-\left(x+\sqrt{g H_{0} t}\right)^{2} / x_{0}^{2}\right)$. Parameter t_{0} is $\left.\sqrt{6 x_{0} /(\alpha a)}\right)($ travel time of waves over the U-shape bay). In the broken naximum width of the U -shaped bay.

References

[^0] 3623623467.

[^0]: 1] Ira Didenkulova and Efim Pelinovsky. "Nonlinear wave evolution and runup in an inclined channel of a parabolic cross-section". In: Physics of Fluids 23.8 (2011), p. 086602. DoI: 10.1063/1.
 3623467. eprint: https://doi.org/10.1063/1.3623467. URL: https://doi.org/10.1063/

