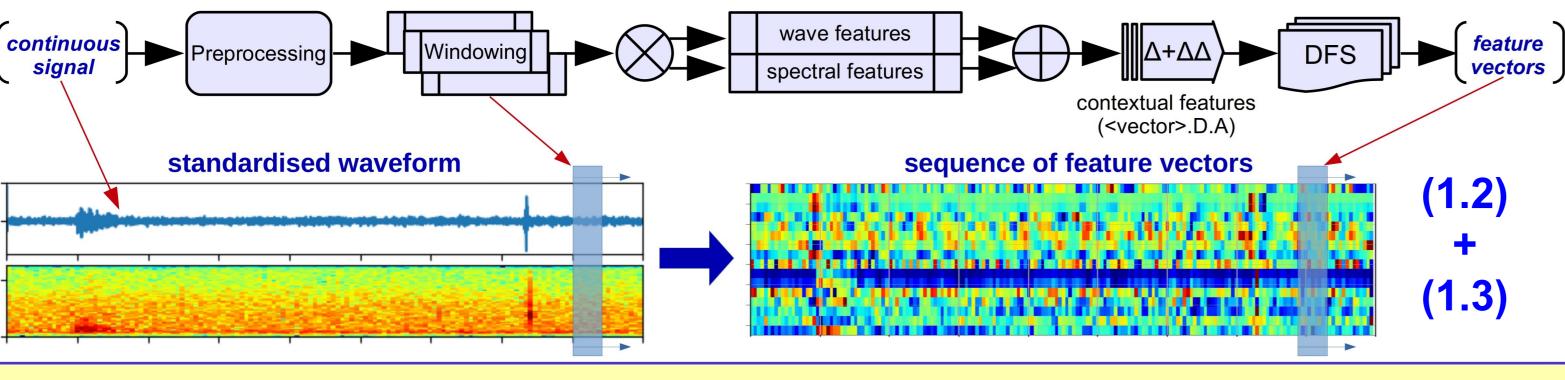
Volcano-Independent Seismic Recognition (VI.VSR): detecting and classifying events of a given volcano using data from others Guillermo Cortés⁽¹⁾, Roberto Carniel⁽¹⁾, Philippe Lesage⁽²⁾, M. Ángeles Mendoza⁽³⁾ and Ivo Della Lucia⁽¹⁾

(1) Dipartimento Politecnico di Ingegneria e Architettura

DPIA, Università degli studi di Udine, Friuli, Italy [guillermo.cortes@uniud.it] [roberto.carniel@uniud.it] [ivodielle90@gmail.com]

0. Aims & Proposals


Volcano-Seismic Recognition (VSR) at Volcano Observatories (VOs) Aims: automatic Volcano-Independent Volcano-Seismic Recognition (VI.VSR)

- Volcano-Seismic (VS) activity is the most used indicator to evaluate volcanic hazard and forecast eruptions⁽¹⁾
- VOs require expert staff to manually label VS events: detect (time delimitation) + *classify* (assign them to their physical type or VS *class*)
- X Manual VSR is slow and not always reliable
- X Currently, automatic VSR is only deployed in few VOs

I. Methodology:

1. Efficient waveform description as a sequence of feature vectors (1.1) standardisation (STAND)⁽⁴⁾ via decomposition + reconstruction (\$dec:\$rec) (1.2) parameterisation (param.#feats) of overlapped waveform segments as feature vectors

(1.3) feature selection (DFS)⁽⁵⁾ in the given (param.#feats) parameterisation scheme iqinal waveforn reconstruction criterion \$rec (1.1) data-driver standardised wavef tandardised waveform

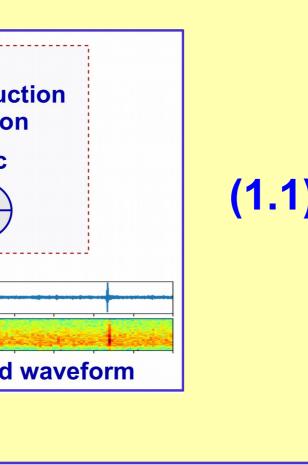
II. Station & volcano-independent VSR results 1. Robust & station-independent VSR at Deception Island

Station-independent VSR under noisy conditions VSR @ Deception **Volcano**⁽⁴⁾: recognizing VT and LP events overlapped on noise/tremor signals in 2009 by models built with data acquired in 1995 at another location:

system	recog type	train.DB = dec.1995 events / classes @ duration	eval.DB = dec.2009 events / classes @ duration	param.#feats	cPrec%
SSA-VSR continu	continuouc	200 / 2 @ 1 0 [h]	707 / 2 @ 12 2 [b]	mix.D.16	66
	COMINUOUS	288 / 3 @ 1,8 [h]	707 / 3 @ 12,2 [h]	mix.D.16[STAND]	76
				in time (OTANI	

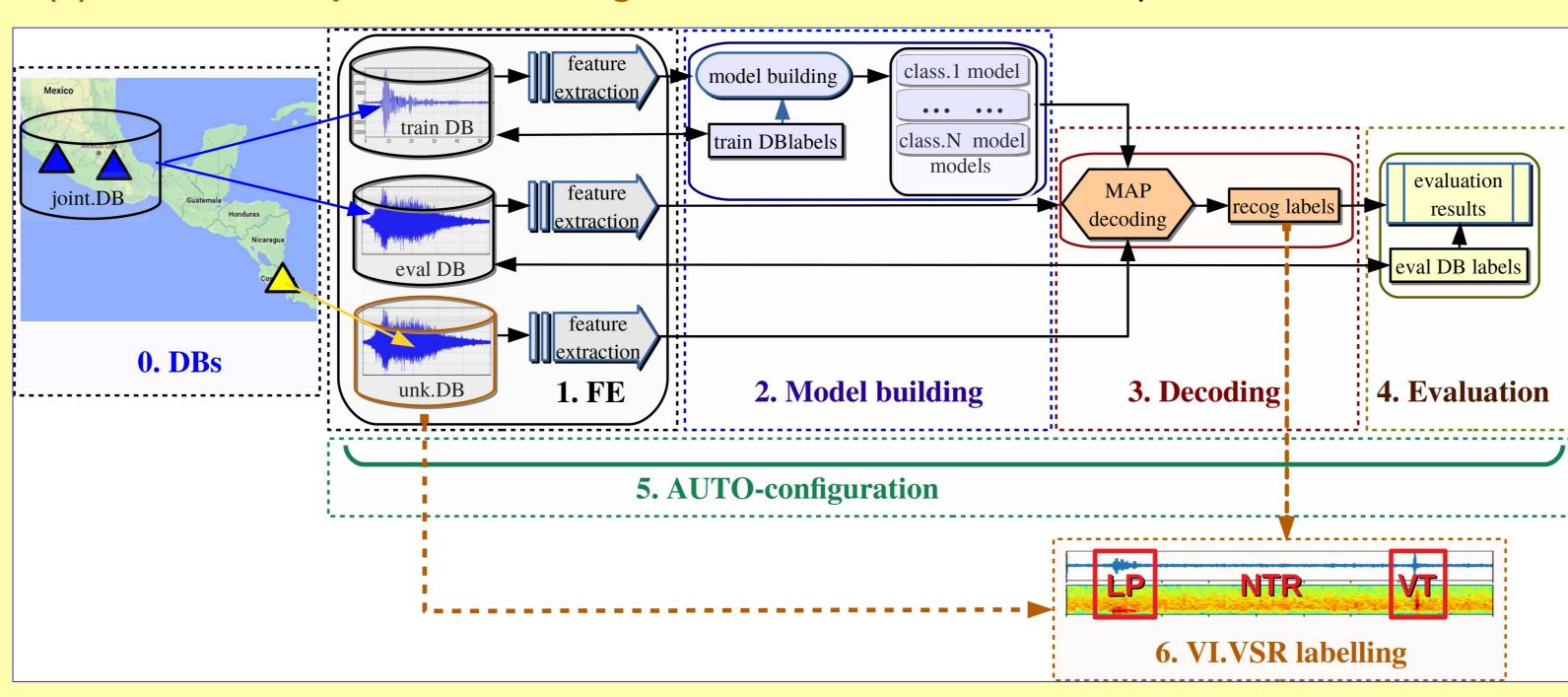
VSR precision increases 16% using waveform standardisation (STAND)

Parallel (PSA) vs. serial (SSA) VSR @ Deception⁽³⁾: class-focused PSA.VSR channels allow a more efficient AUTO configuration than SSA.


system	recog type	train.DB = dec.1995 events / classes @ dur.	eval.DB = dec.1998 events / classes @ dur.	param.#feats	cPrec%
SSA	continuous	288 / 3 @ 1,8 [h]	445 / 3 @ 4,2 [h]	AUTO(mix.D.30)	52
PSA.chans joint.PSA	continuous	288 / 3 @ 1,8 [h]	445 / 3 @ 4,2 [h]	AUTO(mix.D.30)	72 70

An improvement of 38% achieved by dedicated VSR channels (PSA.chans)

Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, MONT BLANC IRD, IFSTTAR, ISTerre, Grenoble, France - [lesage@univ-smb.fr]


- i. automatic Volcano-Seismic Recognition (VSR): statistical modelling of previously labelled VS classes to achieve:
- Real-time VSR to detect and classify events on continuous data streams easy VO integration into most popular data acquisition systems (Earthworm & WebObs)
- ii. Volcano-Independent VSR aims to recognise events from any volcano without any prior knowledge of its VS classes by means of *universal VSR*, allowing: Fast VSR deploy for awakening volcanoes and for new appearing classes in active volcanoes

Efficient waveform description to build universal, Volcano-Independent VSR systems

2. Universal-VI.VSR system setup & recognition of unknown data

- (0) DBs: a universal, *joint.DB* is used to build *universal VSR models*
- (1) Feature Extraction (FE): efficient waveform description by a stream of feature vectors⁽⁶⁾
- (2) Model building: of each VS class in the *train DB* using its *labels*
- (3) **Decoding**: automatic detection & classification of *eval DB* events
- (4) Evaluation of results comparing recog labels vs. eval DB labels via VSR precision (cPrec) (5) AUTO-configuration by (re)evaluation (4) of the (1+2+3) stages
- (6) Volcano-independent labelling of VS events of an unk.DB acquired at another volcano

2. VI.VSR: recognising PopocatépetI events using Colima models

continuous VI.VSR @ PopocatépetI by Colima: waveform standardisation (STAND) + efficient feature selection (DFS⁽⁵⁾) + system auto.configuration (AUTO) empowers volcano-independent VSR:

SSA-VSR continuous 345 / 6 @ 17 [h] 814 / 6 @ 37 [h] MFCC.D.A.33 59 AUTO(MFCC.D.A.33) 65	system	recog type	train.DB = col.2004 events / classes @ dur.	eval.DB = pop.2002 events / classes @ dur.	param.#feats	cPrec%
AUTO(MFCC.D.A.33) 65					MFCC.D.A.33	59
		CONTINUOUS		01470@37[11]	AUTO(MFCC.D.A.33)	65

An enhancement of 10% via system AUTO-configuration

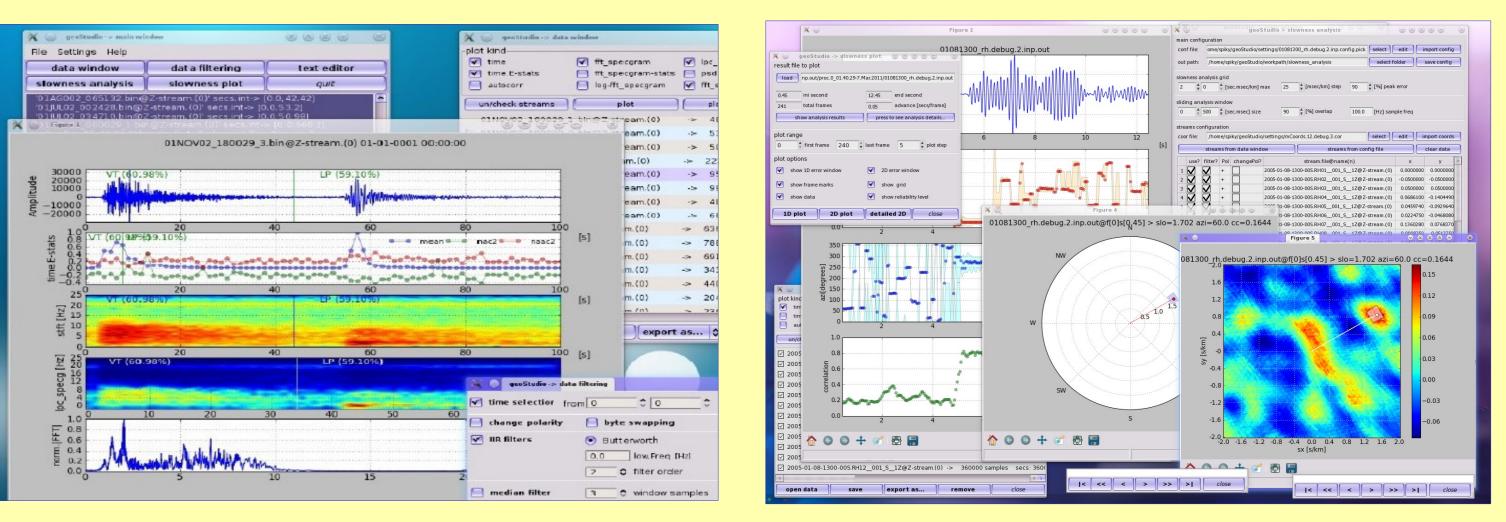
3. VI.VSR: recognising Arenal events by Colima and Popocatépet VI.VSR models built by a joint.DB: complex Arenal events can be successfully classified using *universal* models of a *universal* (joint) training DB

Successing dassing aniversal models of a aniversal joint taining DD					
system	recog type	<pre>train.DB = col.2004+pop.2002 events / classes @ duration ev</pre>	eval.DB = are.2007 /ents / classes @ duration	param.#feats	cPrec%
SSA-VSR	isolated	813 / 7 @ 41 [h]	552 / 7 @ 14 [h]	mix.D.30 AUTO(mix.D.30)	50 71
A 71% of precision classifying complex events thanks to universal DBs					

Proposal: portable & universal VSR systems

i. portable VSR solutions, relying on:

III. VI.VSR highlights


- (!) Remarks:
- Volcano-Independent VSR becomes **operational!** thanks to state-of-the-art **VULCAN.ears** technologies
- Complex volcanoes require joint.DBs in to build efficient VI.VSR models (as Arer volcano with 7 classes and its 3 types of tre
- (+) **Pros**:
- Promising early results!: good precision isolated (>71%) and continuous VI.VSR (>
- geoStudio and pyVSR interfaces allow & easy deployment of VI.VSR systems

(-) **Cons**:

- X A universal waveform description does exist, as it still depends on the training DB
- VSR precision highly depends on the ma labelling of the training DBs

3. Easy VSR integration at VOs via easy-to-use interfaces linking VSR & VOs

- Built-in VSR models of standalone & joint DBs to perform VI.VSR
- Slowness maps by Zero-Lag correlation method

- ii. pyVSR command-line interface as a Python wrapper for the VSR system: Ready-to-use scripts to build VSR models given a labelled DB Tools to run, define and evaluate whole VSR-tests Online VSR of data received from VO data servers

(3) Visual Information Processing Group Universidad de Granada, Spain - [*ninesmp75@gmail.com*]

Easy-to-use (Python-based) user interfaces to facilitate the VSR integration at VOs Structured Hidden Markov models (HMMs) to perform real-time, continuous VSR⁽²⁾

ii. universal VSR, based on VULCAN.ears project⁽³⁾ approaches:

Universal DBs collected from more than 15 volcanoes to build universal VSR models Efficient waveform description will enhance the volcano-independence of models Parallel VSR channels focused on each VS class, increasing reliability and precision

i. geoStudio⁽³⁾ multi-platform, graphical user interface for seismic analysis:

✓ I/O by ObsPy[®] builtin libs. Filtering and advancing plotting features

	References & Acknowledgments
in order enal remors)	 Boué et al., 2016, "Performance of the 'material Failure Forecast Method' in real-time situations: A Bayesian approach applied on effusive and explosive eruptions", JVGR, 327(0). Benítez et al., 2009, "Automatic recognition of volcano- seismic events based on Continuous Hidden Markov Models", The VOLUME Project. ISBN 978-1-905254-39-2, C.J Bean and European Commission. 6th Framework Programme. 2. Cortés et al., 2017, "Unsupervised volcano-seismic recognition as a tool for real-time monitoring and eruption forecasting: the VULCAN.ears project", IAVCEI 2017
n in both, >65%) v a fast	 (4) Cortés et al., 2019, "Standarization of Noisy Volcanoseismic Waveforms as a Key Step toward Station-Independent, Robust, Automatic Recognition", SRL, 90(2A). (5) Álvarez et al., 2012, "Discriminative feature selection for automatic classification of volcano-seismic signals", GRSL,9(2)
	(6) Carniel 2014, "Characterization of volcanic regimes and identification of significant transitions using geophysical data: a review", BV, 76(0).
an't yet 3 nanual	Acknowledgments: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. [749249] (VULCAN.ears project)