Improvement of the Hazard Risk Assessment of Land-affecting Typhoon In the
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Motivation

« Western North Pacific Typhoons cause significant loss of life and property.
One way of mitigating severe, negative impacts on different sectors of
society is the development and application of financial instruments for risk
transfer and adequate response, for example parametric (re-)insurance
solutions.

In order to design a reliable structure for the parametric insurance

programmes, it is necessary to have reliable and robust assessment of the
real hazard frequency and intensity.

The small samples of physically consistent historical data lead to less robust
assessment of the real hazard risk assessment and its uncertainty. Here
we outline an approach using ensemble prediction system to address this
problem, by analysing the ensemble of ~11,100 model years.

Methodology

« This approach reutilises Ensemble Prediction Systems: Track all tropical cyclone (TC)
events including those that did not realise in the real atmosphere. This can increase the
sample size of “observed” TC events (Osinski et al. 2016).
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Storm severity during storm duration for storm duration between 30 and 84 h; (left) for ERA-Interim and (right)
for ECMWF EPS. From Osinski et al. (2016)

1. Construct a physically consistent typhoon event set

« THORPEX Interactive Grand Global Ensemble (TIGGE), initialised at 12 UTC in
15t May through 31st Nov of each year 2008 to 2017. Only selected models are
used (CMA [14 members], ECMWF [20 members], JMA, [20 members], NCEP
[20 members]).
10m wind tracking of 98t percentile exceedance (WiTRACK; Leckebusch et al.
2008, Kruschke 2015)
Identify TC events using Logistic Regression Classifier which is constructed
using characteristics of observed TC events in reanalysis
Construct an event set which only consists of non-realise TC events (pure EPS
TCs events)

2. Verify against observations
« Compare TIGGE event set to observed best tracks and to tracking in reanalysis

3. Construct typhoon hazard risk assessment of land-affecting TCs in the WNP
« Examine spatial distribution of landfalling typhoons
« Examine spatial distribution of cumulative event storm severity index (ESSI)
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Logistic Regression Classifier

WITRACK detects TC and non-TC
windstorm events.

TC and non-TC windstorm events have
different event characteristics.
Logistic Regression Classifier is
constructed using event characteristics

of JRA-55 (1979-2014) (17 variables
are selected) to differentiate TC and
non-TC events.
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Box-whisker plot of (left) difference between final latitude
and initial latitude, (right) lifetime, for non-TC and TC.
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Landfall events
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TC Event Set Climatology
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Track density of validation set (JRA-55 2015-2017), (a) and
(d).: Correct predictions of TC and non-TC, respectively; (b)
and (c): False predictions

(Left) Track density of pure EPS TC event set of different
models (CMA, ECMWE JMA, and NCEP), overall track
density of TIGGE and track density of JRA-55 (19/79-2017)

(Bottom Left) Landfall heat map of pure EPS TC event set
of different models (CMA, ECMWE JMA, and NCEP), overall
landfall heat map of TIGGE and landfall heat map of JRA-55

(1979-2017)

(Bottom Right) Landlfall heat map of pure EPS TC event set
of different models (CMA, ECMWE JMA, and NCEP), overall
landfall heat map of TIGGE and landfall heat map of JRA-55
(1979-2017). Only events with at least typhoon strength

during landfall are considered.
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(Top) Examples of impact footprint of pure EPS TCs in the TIGGE event set.
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Number of 6-hour instantaneous SSI entries of grid
boxes of Guangdong Province, China, for different
models (CMA, ECMWE JMA, NCEE and JRA-55)
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Summary and Future Work

The Logistic Regression Classifier can differentiate TC and non-TC events with
high accuracy with low rate of Type-I and Type-II errors.

TIGGE pure EPS TC event set has similar climatology as the historical
climatology of TCs, also increases available TC “observations by a factor of 80.

A more robust TC hazard risk assessment can be produced using the ensemble
prediction system approach.

Future work will continue to include more TIGGE data, which would further
improve the robustness of the typhoon hazard risk assessment. A compound
SSI, SSI-wet, which includes wind and precipitation of TCs, will also be
developed.
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