CALFIN: A Calving Front Mask Dataset for
West Greenland, 1972-2018

DANIEL CHENG!?, ERIC Y. LAROUR?, WAYNE HAYES!

T UNIVERSITY OF CALIFORNIA AT IRVINE (UCI), IRVINE, CA
2 CALIFORNIA INSTITUTE OF TECHNOLOGY - JET PROPULSION LABORATORY (JPL), PASADENA, CA




Motivation

< Determining where glaciers
end is useful data

< Manual labeling is time
intensive

< Many glaciers not labeled,
new data needs to be added




What i1s CALFIN?

+» Dataset of calving front masks for West Greenland
+» Data source: Landsat, 1972-2018.
+» Automated with convolutional neural network tool, CALFIT
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Approach

%

Edge detection
not enough

Texture analysis
not robust

Neural networks
provide solution




Approach -
Neural Networks

< NNs automatically learn features and relations between
features
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CALFIT - Architecture
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UNet CNNs allow for shared near-global context, pixel-level
segmentation, and efficient computation (O Ronneberger, 2015)

DeeplabV3+ with Xception based UNet offers state of the art
results (LC Chen, 2018)
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CALFIT Insights
% Global context is needed

< Local context not as important S 22l S22 B2
. D labv3+ MobileNetV2 224 0.6956
4 Strong dependence on having seplabieT MOBIETE
full front + glacial ice Deeplabv3+ MobileNetV2 256 0.6026
. o« o D labv3+ Xception 224 0.8794
< Train on problematic images SeplabyET Feepton
o Deeplabv3+ Xception 256 0.8986
< Augment data, but be careful
Deeplabv3+ Xception 384 0.8257

with scale/distort

Deeplabv3+ Xception 512 0.6956




Results &
Error
Analysis

Upernavik

Able to capture glacial
tongues

Uses texture gradient
to detect ice mélange
boundary




Results &
Error
Analysis
Jakobshavn
Ice mélange causes

uncertainty

Manageable with
postprocessing

Compression/scaling
may decrease accuracy




Results &
Error
Analysis

Hayes

Extra training allows ice
mélange to be more
clearly separated

Not as consistent due
to complexity of fronts

Hayes 2008-07-30




Results &
Error

Analysis
Kong-Oscar

Worst accuracy all
around

Requires additional
training




Results &
Error
Analysis

Kangiata-Nunata

Handles |ight cloud Kangiata-Nunata 2000-02-22

cover/Landsat 7
scanline errors

Shows signs of
overfitting/memory
effects

Kangiata-Nunata 2009-08-09



Results &
Error
Analysis

Rink Isbrae

. Rink-Isbrae 2004-09-13
Some images need to

be manually labeled
and retrained on

Rink-Isbrae 2018-05-23



Results &
Error
Analysis

Docker-Smith North
Sparsely trained

Calving events handled
well

Higher texture contrast,
higher confidence

Docker-Smith-N 1997-09-22



Future Work - Postprocessing

< Issues:

< Pixel level mask not as useful as poly-line

«» Temporal information is not propagated
< Solution:

< Use OpenCV to manually get 1 contour

< Initialize line and evolve it over time

< Use NN output to inform evolution




Future Work
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*» Spatial resolution — accuracy tradeoff

*+» Larger input size offers theoretical improvements, practical drawbacks
++ Additional data incorporation/evaluation

% SAR

** Non-marine terminating glaciers

%+ Existing SHP extraction/comparison

“* Preliminary results: https://www.ics.uci.edu/~dlcheng/
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** Level 0 Product — unprocessed masks

** Level 1 Product — postprocessed Shapefiles
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