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Peak shear stress vs Temperature
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Peak shear stress vs Normal stress
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A typical experiment
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Background

Methods

Effects of mica-rich rocks on the failure criterion of ice-filled permafrost rock joints

Rock slope failures in high mountains 
poses great hazards to human lives, 
buildings and infrastructure directly or 
indirectly by secondary geohazards i.e., 
flooding or debris flows1,2. The added 
strength of ice in permafrost rocks allow 

steeper slopes than similar ice-free rock 
slopes. During thawing, the strength 
of permafrost rock joints decreases, 
causing destabilization and potentially 
large rock slope failures3,4. 

The samples sliding surface were ground 
with a grinding powder to ensure 
reproducibility of the initial roughness. 
A direct shear machine, developed at 
Technical University of Munich, was 
used to conduct 36 tests on rock-ice-rock 
sandwich samples. A mean shear 
strain rate of 9.16 ± 5.9 × 10-4 s-1 was 
applied, while a constant normal stress 
equivalent to 4 or 15 meter overburden 
was maintained. The temperature was 
constant and controlled at -10°C, -6°C 
and -2°C.

Results 
•	36 shear experiments were conducted 

on three kinds of  ice-filled rock-rock 
interfaces at three temperatures and 
two normal forces.
•	Peak shear stress depends strongly on 

temperature.
•	Friction during sliding depends slightly 

on normal load and temperature.
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Shear machine setup. Shear cylinders enclosing 
a sandwich sample.

Prepared and sheared sandwich 
sample.

The cohesion of the rock volume in three 
localities in Europe with high rock fall 
hazard, Ramnanosi and Nordnesfjellet in 
Norway and  Matterhorn in Switzerland, 
is partly controlled by the presence of 
ice in rock joints. 

Aim

The aim of this study is to:
•	Test validity of the permafrost failure criterion presented in Mamot et al., 2018 

for mica-rich rocks 
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Schematic shear machine setup.

4
3

2

1

C

B
A
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   A Shear force induced by gravity 
 and pre-existing stresses
   B  Hydrostatic pressure
   C Cryostatic pressure

Opposing forces
   1 Creep and fracture of ice
   2 Fracture of rock-ice contacts
   3 Friction along fractures (rock-rock)
   4 Fracture of cohesive rock bridges

Ice fi lling

Water level

Figure based on Krautblatter et.al (2013)5.
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Location of sampling sites with unstable rock falls

Discussion and conclusion
•	Temperature has the strongest effect on the shear strength of an 

ice-filled joint with higher shear strength at lower temperature: 
this effect can be interpreted by the creep of ice at the highest 
temperatures. Conversely, the internal friction angle is close to 
0.5, it does not change significantly with temperature.
•	The dynamic friction coefficient is lower at higher normal stress. 

This effect could be interpreted by the formation of melt pockets 
due to shear heating at higher normal stress.

•	 The internal friction angle of ice-filled joints in mica-rich rocks 
(0.5 ± 0.1) is significantly smaller than that for limestone (1.1 
± 0.4). This effect may be explained by the low friction against 
mica minerals.
•	 Our data provide a new criterion for failure of ice-filled joints in 

mica-rich rocks.
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