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Differences due to 
different structure, 
parametrization…?

Land Surface Models today:

...produce very different 
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Vegetation Optimality Model 
Optimizes vegetation properties to 
maximize NCP
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maximize NCP

No vegetation data needed
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Vegetation Optimality Model 
Optimizes vegetation properties to 
maximize NCP

No vegetation data needed
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Vegetation Optimality Model 
Optimizes vegetation properties to 
maximize NCP

Renku  連句 
Software platform for reproducible and 
collaborative science 

No vegetation data needed
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Evaporation is quite right! 
With less data!
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response to change due to 
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Net Carbon Profit :

Difference carbon uptake and carbon costs
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Optimizes vegetation properties to 
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No vegetation data needed

Renku  連句 
Software platform for reproducible and 
collaborative science 
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HYPOTHESES

• Observed vegetation dynamics in tropical savanna sites can be 
explained by the maximization of Net Carbon Profit. 

• Optimization of vegetation properties for the Net Carbon Profit 
leads to reduced data requirements for Land Surface Models

• Hydrological formulation of Land Surface Models matters for 
flux exchanges
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VEGETATION OPTIMALITY MODEL

Optimized constants
• Tree cover fraction
• Tree rooting depth
• Grass rooting depth
• Water use strategies

Dynamically optimized variables:
• Grass cover fraction
• Photosynthetic capacity
• Stomatal conductances
• Fine root surface area

Highlights
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VEGETATION OPTIMALITY MODEL

Free draining conditions
• Conventional approach
• Large unsaturated zone (Zr = 30m)
• No influence of groundwater table
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Fast drainage

Dynamic water tables
• Unsaturated zone from 5 – 30m
• Based on max. elevation and 

stream elevation
• Drainage depends on slopes
• Influence of groundwater tables
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Getting the hydrology right:
• Groundwater influences root water 

uptake
• Water balance should be correct
• Modelling for the right reason
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• Mean annual rainfall: 500-1800 mm
• Pronounced wet season: Nov-Feb
• Evergreen trees + seasonal grass

• Evaporation and CO
2
 fluxes >10 years

NORTH AUSTRALIAN TROPICAL TRANSECT

Increasing dryness
1700 mm/yr
850 mm/yr

Howard Springs
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Concepts
• Tracking of scientific steps to 

create data lineage, i.e. a 
knowledge graph

• Updating of out-dated results
• Tool to re-use or re-run analyses
• Sharing of analyses

RENKU  連句 

Go to RENKU website ➔

Features
Renku is based on :

• Gitlab
• JupyterHub
• Kubernetes
• Keycloak
• Common Workflow Language

Renku is an environment for collaborative, reproducible 
data science

https://renku.readthedocs.io/en/latest/index.html
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RENKU  連句

Renku logRenku log

Show knowledge graphShow knowledge graph

Renku statusRenku status

Renku updateRenku update

Renku runRenku run

Renku status shows if all outputs are 
generated from the most recent input data

Renku log shows how a file is generated. In 
other words, is shows the knowledge graph.

Renku update re-runs everything to have all 
outputs based on the most recent inputs

Renku run makes sure the workflow is 
tracked

Go to workflow of this experiment➔
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INITIAL RESULTS

Reasonable match observed and modelled fluxes

But there is room 
for improvement...

HowardSprings
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MODEL COMPARISON

• Similar results with 
less data

• Correct seasonal 
amplitude in most 
cases

• Improvements still 
needed:

→ Assimilation too 
high

→ Especially for 
drier sites
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MODEL COMPARISON

Higher costfactor:
• Improves seasonal 

signal
• Especially for wetter 

areas
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Costfactor for water 
transport is unknown, 
and may need 
refinement

Read more ...

Highlights

Graph modified from:
Whitley et al. (2015): Biogeosciences 13
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MODEL COMPARISON

• Some improvements
• Some deteriorations
• Mostly similar results

H
ow

ar
dS

pr
in

gs
A

de
la

id
eR

iv
er

D
al

yU
nc

le
ar

e
d

D
ry

R
iv

er
S

tu
rt

P
la

in
s

Hydrology is 
parameterized for free 
draining and non-free 
draining conditions

Uniqueness of place?
Robust model? 

Highlights

Graph modified from:
Whitley et al. (2015): Biogeosciences 13
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IMPROVING HYDROLOGY AND CARBON COSTS

Free drainage

Dynamic water
 table

Hydrology differs strongly, but has hardly 
any influence on fluxes

Howard Springs Adelaide River Daly Uncleared Dry River Sturt Plains

See more...
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IMPROVING HYDROLOGY AND CARBON COSTS

Improvements by the hydrology:
• Only small improvements at end of dry 

season

Howard Springs

AdelaideRiver

DalyUncleared

DryRiver

SturtPlains

See more ...

Free draining conditions

Dynamic water table
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IMPROVING HYDROLOGY AND CARBON COSTS

Howard Springs

AdelaideRiver

See more ...

DalyUncleared

DryRiver

SturtPlains

• Higher values of the water transport cost parameter 
improve assimilation

• Only small differences for dynamic water tables

Free draining conditions

Dynamic water table
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PERFORMANCES

Increasing dryness

Rel. Err. Annual Means

Rel. Err. Mean Wet Season

See more ...

Kling-Gupta Efficiency

Rel. Err. Mean Dry Season

• Assimilation increasingly over-estimated for drier areas
• Evaporation still okay
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VEGETATION DYNAMICS

• Temporal signal largely reproduced
• Timing improves for higher cost factor
• Higher minimum cover for non-freely draining conditions

Howard Springs

AdelaideRiver

See more ...

DalyUncleared

DryRiver

SturtPlains

Free draining conditions

Dynamic water table

Better 
timing

Higher 
minimum
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CONCLUSIONS

• Optimizing for the Net Carbon Profit leads to similar 
vegetation dynamics as observed

• Similar performances as conventional models, with less data

• Not a clear influence of the hydrological formulation

• Cost factor for water transport needs to be refined

• Reproducible science with Renku! 

Highlights
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Tasks

Data

Tools

Most data comes in 
at the end for 
evaluation!

|___________|
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Click for 
example
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CARBON COSTS

• Root respiration is a function of respiration rate (cRr, mol s-1 m-3), fine root radius 
(rr, m), root surface area per unit ground area (SAr,  m2   m-2) :

 

• Leaf area costs are a function of vegetated fraction (MA, -) , clumped leaf area 
index (2.5, -), average carbon investment (0.22 μmol s-1 m-2 ):

• Water transport costs are a function of rooting depth (yr), vegetated fraction    
(MA, -) and a cost factor  (cpcff, mol s-1 m-3):

The cost factor cpcff is rather unknown, and may need refinement.

Rv=cpcff∗M A yr

R f=2.5×0.22μmols
−1m−2M A

Rr=cRr (
rr
2
S Ar)

Back
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HYDROLOGY AND CARBON COSTS

Improvements by the hydrology:
• Dynamic groundwater tables improve 

evaporation at end of dry season
• Still just small improvements

Howard Springs

AdelaideRiver

DalyUncleared

DryRiver

SturtPlains

See more ...

Free draining conditions

Dynamic water table
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IMPROVING HYDROLOGY AND CARBON COSTS

Improvements by the hydrology:
• Dynamic groundwater tables do not show a 

strong improvement

Howard Springs

AdelaideRiver

DalyUncleared

DryRiver

SturtPlains

See more ...

Free draining conditions

Dynamic water table
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IMPROVING HYDROLOGY AND CARBON COSTS

• Higher values of the water transport cost parameter 
improve assimilation

• Dynamic groundwater tables do not help for 
assimilation

Howard Springs

AdelaideRiver

DalyUncleared

DryRiver

SturtPlains

See more ...

Free draining conditions

Dynamic water table
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IMPROVING HYDROLOGY AND CARBON COSTS

Improvements by the hydrology:
• Dynamic groundwater tables do not show 

strong improvements

Howard Springs

AdelaideRiver

DalyUncleared

DryRiver

SturtPlains

See more ...

Free draining conditions

Dynamic water table
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HYDROLOGY AND CARBON COSTS

• Higher values of the water transport cost parameter 
improve assimilation

• Dynamic groundwater tables do not help for 
assimilation

Howard Springs

AdelaideRiver

See more ...

DalyUncleared

DryRiver

SturtPlains

Free draining conditions

Dynamic water table
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IMPROVING HYDROLOGY AND CARBON COSTS

• Higher values of the water transport cost parameter 
improve assimilation

• Dynamic groundwater tables do not help for 
assimilation

Howard Springs

AdelaideRiver

See more ...

DalyUncleared

DryRiver

SturtPlains

Free draining conditions

Dynamic water table
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IMPROVING HYDROLOGY AND CARBON COSTS

• Higher values of the water transport cost parameter 
improve assimilation

• Dynamic groundwater tables do not help for 
assimilation

Howard Springs

AdelaideRiver

See more ...

DalyUncleared

DryRiver

SturtPlains

Free draining conditions

Dynamic water table
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IMPROVING HYDROLOGY AND CARBON COSTS

• Higher values of the water transport cost parameter 
improve assimilation

• Dynamic groundwater tables do not help for 
assimilation

Howard Springs

AdelaideRiver

See more ...

DalyUncleared

DryRiver

SturtPlains

Free draining conditions

Dynamic water table
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PERFORMANCES

Rel. Err. Annual Means

Rel. Err. Mean Wet Season

See more ...

Kling-Gupta Efficiency

Rel. Err. Mean Dry Season

• Assimilation increasingly over-estimated for drier areas
• Evaporation still okay

Increasing dryness
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PERFORMANCES

Rel. Err. Annual Means

Rel. Err. Mean Wet Season

See more ...

Kling-Gupta Efficiency

Rel. Err. Mean Dry Season

Increasing dryness

• Assimilation increasingly over-estimated for drier areas
• Evaporation still okay
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PERFORMANCES

Rel. Err. Annual Means

Rel. Err. Mean Wet Season

See more ...

Kling-Gupta Efficiency

Rel. Err. Mean Dry Season

Increasing dryness

• Assimilation increasingly over-estimated for drier areas
• Evaporation still okay
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VEGETATION DYNAMICS

• Temporal signal largely reproduced
• Timing improves for higher cost factor
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RENKU  連句

Renku logRenku log

Show knowledge graphShow knowledge graph

Renku statusRenku status

Renku updateRenku update

Renku status shows if all outputs are 
generated from the most recent input data

Renku log shows how a file is generated. In 
other words, is shows the knowledge graph.

Renku update re-runs everything to have all 
outputs based on the most recent inputs

Renku run makes sure the workflow is 
tracked

x

Go to workflow of this experiment➔
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CO
2
 RECORDS

Atmospheric CO
2
 levels are needed as input for the 

VOM model. Therefore, weekly data is taken from the 
Mauna Loa observatory. 

Create renku datasetCreate renku dataset

Add dataAdd data

    Back to knowledge graph
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VOM model. Therefore, weekly data is taken from the 
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SILO WEATHERDATA

Meteorological data are needed as input for the VOM 
model. Data is taken from the Australian Silo 
weatheroffice. 

Create renku datasetCreate renku dataset

Add dataAdd data

    Back to knowledge graph
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Add dataAdd data

SILO WEATHERDATA

Meteorological data are needed as input for the VOM 
model. Data is taken from the Australian Silo 
weatheroffice. 
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    Back to knowledge graph
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SILO WEATHERDATA

Meteorological data are needed as input for the VOM 
model. Data is taken from the Australian Silo 
weatheroffice. 
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CREATE MODEL INPUT

The meteorological data and the atmospheric CO
2
 

data need to be processed and formatted in order 
to serve as input for the model. 

Run commandRun command

    Back to knowledge graph
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CREATE MODEL INPUT

The meteorological data and the atmospheric CO
2
 

data need to be processed and formatted in order 
to serve as input for the model. 

x



66

Home Next

MethodsMethods

ResultsResults

ConclusionsConclusions

R
e

n
ku

 w
o

rkflo
w

Knowledge graphKnowledge graph

HypothesesHypotheses

MotivationMotivation

Previous

RUN VOM OPTIMIZATION

The Shuffled Complex Evolution algorithm is used in 
order to derive the vegetation properties that maximize 
NCP.

Run commandRun command

• Sample s points
• Rank points
• Partition into complexes
• Evolve complex
• Shuffle complexes
• Check convergence

Figure from : Duan, Q., Sorooshian, S., Gupta, V.K., 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed 
models. Journal of Hydrology 158, 265–284. https://doi.org/10.1016/0022-1694(94)90057-4

    Back to knowledge graph
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The Shuffled Complex Evolution algorithm is used in 
order to derive the vegetation properties that maximize 
NCP.

• Sample s points
• Rank points
• Partition into complexes
• Evolve complex
• Shuffle complexes
• Check convergence

• Sample s points
• Rank points
• Partition into complexes
• Evolve complex
• Shuffle complexes
• Check convergence

RUN VOM OPTIMIZATION

x

Figure from : Duan, Q., Sorooshian, S., Gupta, V.K., 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed 
models. Journal of Hydrology 158, 265–284. https://doi.org/10.1016/0022-1694(94)90057-4

    Back to knowledge graph
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UNCERTAINTY ESTIMATES & STATISTICS

The model runs with the 5% highest NCP are 
selected in order to construct uncertainty bounds. 

Run commandRun command

To assess the model performance, several 
independent datasets are used:

• DINGO fluxdata
• Fraction vegetation cover from fPar

The performances are assessed by:

• Timeseries with uncertainties
• Relative errors annuan and seasonal 

means
• Kling-Gupta efficiencies
• Residuals     Back to knowledge graph
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    Back to knowledge graph

The model runs with the 5% highest NCP are 
selected in order to construct uncertainty bounds. 

To assess the model performance, several 
independent datasets are used:

• DINGO fluxdata
• Fraction vegetation cover from fPar

The performances are assessed by:

• Timeseries with uncertainties
• Relative errors annuan and seasonal 

means
• Kling-Gupta efficiencies
• Residuals

UNCERTAINTY ESTIMATES & STATISTICS
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DINGO

Fluxes are derived with the DINGO algorithm from the 
flux towers at the study sites.

Create renku datasetCreate renku dataset

Add dataAdd data

HowardSprings

AdelaideRiver

DalyUncleared

DryRiver

SturtPlains

    Back to knowledge graph
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Add dataAdd data

    Back to knowledge graph

DINGO

HowardSprings

AdelaideRiver

DalyUncleared

DryRiver

SturtPlains

Fluxes are derived with the DINGO algorithm from the 
flux towers at the study sites. x
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DINGO

HowardSprings
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SturtPlains

Fluxes are derived with the DINGO algorithm from the 
flux towers at the study sites.
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FRACTIONAL COVER

The Enhanced Vegetation Index from MODIS is used to 
compare the modelled and observed vegetation 
dynamics.

Create renku datasetCreate renku dataset

Add dataAdd data

Fractional cover derived 
from satellite observed fPAR 
are used to compare with 
modelled vegetation cover

    Back to knowledge graph
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Fractional cover derived 
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FRACTIONAL COVER

The Enhanced Vegetation Index from MODIS is used to 
compare the modelled and observed vegetation 
dynamics.
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HYDROLOGY AND CARBON COSTS

Switching the vegetation properties for the two hydrological 
situations leads to similar results:

• Hydrological formulation not of influence 

Howard Springs

AdelaideRiver

DalyUncleared

DryRiver

SturtPlains

See more ...

Vegetation 
parameters from 
dynamic water 
table

Vegetation 
parameters from 
free draining 
conditions

Free draining conditions

Dynamic water table
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