

Experience from InSAR monitoring of transport infrastructure in the Czech Republic: Adaptation of InSAR results to the geodetic standards

Ivana Hlaváčová, Jan Kolomazník GISAT, s.r.o., Prague, Czech republic

ivana.hlavacova@gisat.cz

Motivation

- Sentinel-1 \rightarrow extension of InSAR applicability
- Infrastructure monitoring R&D projects
- \rightarrow interesting for state agencies (highway, railway, bridges)
- Results to be explained to geodesists

Comparison InSAR/geodesy

- Spatial + temporal coverage
- Monitoring to the past
- Uncertainty about the measured point locations
- Uncertain movement direction and cause
- Unclear accuracy
- Validation: no definition of velocity (low accuracy of measurements)

gisat

Geodesists' requirements

- Accuracy of the method / data
 - Different for local scale and long-distances
 - Depends on the quality of the reference point
 - CR as a reference point?

- Reference network \rightarrow worse accuracy, higher reliability
 - possible spatial trends \rightarrow detrending? accuracy?

InSAR limitations

gisat

- Low point density in vegetated areas
- CR installation: size/coherence
- Using an apriori (linear) model
- Ambiguities \rightarrow nonlinear system with possible systematic errors
- APS: estimation from the data, accuracy impact?

InSAR limitations: examples) gisat

Artifact: jump of appr. 28 mm estimated by InSAR, very improbable

Real jump: bridge rectification (11/2015) 15 mm down (LOS 12 mm)

Coherence – precision - accuracy) gisat

- Coherence: quality of the point (influenced by data)
 - Measure of a fit to the apriori model
 - Independent of number of images and number of unknowns!
 - Does not say if the point moves or not
- Precision: repeatability of the measurement
 - Evaluated from coherence [Colesanti03] \rightarrow still a property of the reflection cell
 - One-measurement stddev quite high
 - Velocity stddev low for high no. of images
- Accuracy: correspondence to the reality
 - APS influence should be included

Accuracy estimation) gisat

- Goal: to provide clients with a "credible" estimation of accuracy
- Processing performed on a stable area, same dataset, >= 5000 points
- Points divided into groups according to their coherence
- Velocity mean/stddev calculated
- Outliers excluded

Large areas: accuracy after swath merge?

Validation

- Ground-based validation only on few points (global scale? trends?)
- Temporal interpolation: based on the (linear) model, or interpolation?
- Necessity to calculate thermal dilations between the two points (possible illumination effects, temperature lags)
- Cross-track InSAR validation (movement direction!)

Designed method

- Monitoring of a highway built in a landslide-prone area
- Reference network: 4 both-sided CRs close the AOI, with possible "natural" points further away
- Points in the network periodically tested w.r.t. each other for possible movement
- GPS measurements on the CRs once a year, or in case of an "alarm" detected by InSAR (as a part of a GPS network)
- InSAR processing
- every 2 months

gisat

Future: automatic TS classificatio **gisat**

Thank you!

ivana.hlavacova@gisat.cz

Shenzen algorithm

- TS re-reference to all points (reliability!)
- Results less dependent on the quality (and location) of the ref. point
- Colesanti's relation between coherence and precision distorted
- Residues stddev not really affected by Shenzen
- Stddev more sensitive to outliers, image exclusion necessary (coh remains similar!)
- \rightarrow stddev as a quality of the measurement?
- → shall we apply Shenzen for geodetic applications?

