

TYRRHENIAN AND LIGURIAN SEAS: current reversal and flow variability within the Corsica channel

Roberta Sciascia – CNR-ISMAR, Italy

Marcello Magaldi, Anna Vetrano – CNR-ISMAR, Italy Katell Guizien – LECOB-CNRS, France



The Tyrrhenian and Ligurian seas are linked through the Corsica Channel, a strait located between the Corsica and Capraia Islands

The dynamics within the Corsica Channel are important for:

- > Deep Water Formation in the Gulf of Lion (Schroeder et al., 2010)
- > biological processes and species distribution (Aliani and Meloni, 1999)
- > dispersal of substances and pollutants (Suaria et al., 2016)

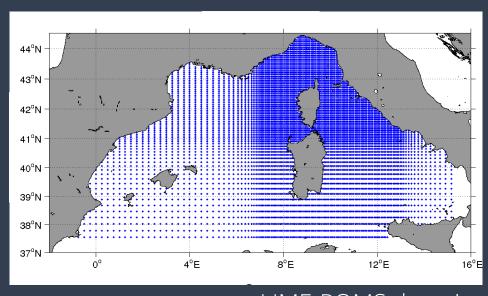
(Suaria et al., 2016)

The low-frequency variability of the currents in the Channel is well established in the literature and it is dominated by a seasonal signal (Astraldi and Gasparini, 1992)

The dynamic within the channel have been observationally determined by a single mooring in the deepest part of the Channel (Astraldi and Gasparini, 1990)

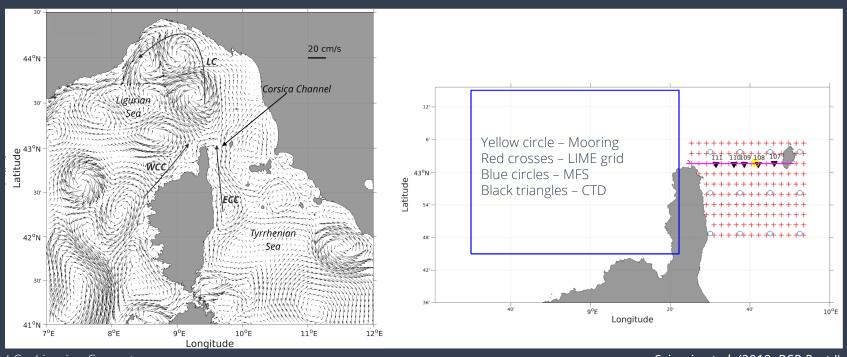
The single mooring configuration is unable to explore the across-channel variability of the horizontal currents but it describes their vertical profiles (Vignudelli et al., 2005)

Less attention has been historically put in the high-frequency variability (order of a few days to a week) of the same currents (Manzella, 1985; Vignudelli et al., 1999; Ciuffardi 2016)


Little work has been done in modeling the Corsica Channel at high-resolution

LIME – ROMS Ligurian Integrated Modelling Effort

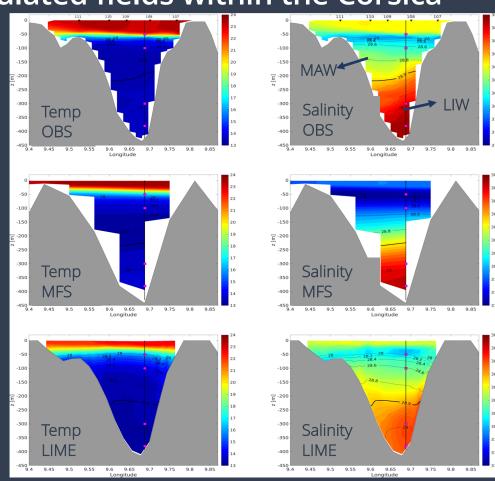
Simulated years	2004-2006
Min Horizontal resolution	1/16 x 1/16 (~ 6 km)
Max Horizontal resolution	1/64 x 1/64 (~1.5 km)
Vertical Coordinates	Sigma (50 levels)
Surface Forcing	ERA-INTERIM (3 hourly)
Boundary Condition	Mediterranean Forecasting System - SYS4a3 product (daily)
Bathymetry	ETOPO1



LIME-ROMS domain

How are the Ligurian and Tyrrhenian basin linked?

Comprehensive joint observational-modeling approach


How realistic are the simulated fields within the Corsica

Channel?

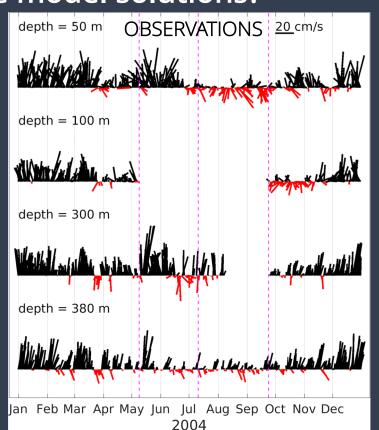
Hydrography of MFS and LIME in line with the observations

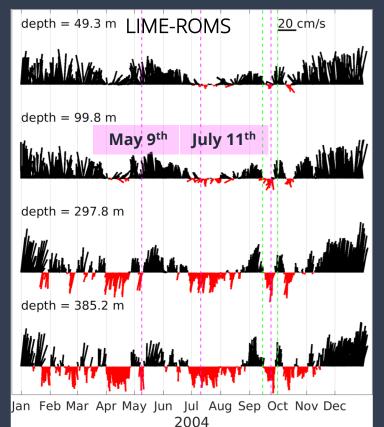
MFS Levantine Intermediate Waters more in line with the observations

LIME surface salinity agrees better with the observations compared to MFS

Can the model reproduce the observed seasonal variability in the water mass transport through the Channel?

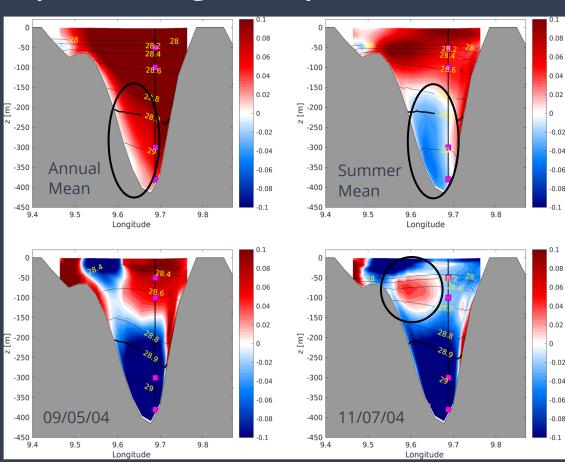
 LIME-ROMS
 $0.49 \pm 0.48 \text{ SV}$


 MFS
 $0.19 \pm 0.30 \text{ SV}$


 OBS
 $0.54 \pm 0.49 \text{ SV}$

- Water mass transport similar to the observations
- Higher variability compared to low resolution models

Are Corsica Channel reversals present and important in the model solutions?

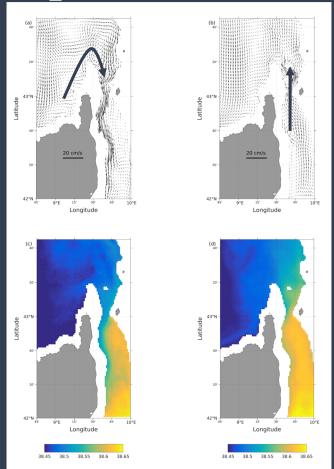


Is a single mooring adequate enough to capture the current

reversals variability?

Annual meridional velocity averages are northward/positive and almost uniform over the Channel

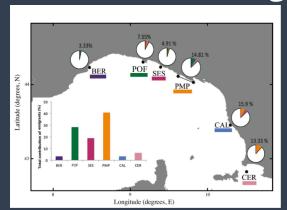
Seasonally and daily negative meridional velocities are found in some areas

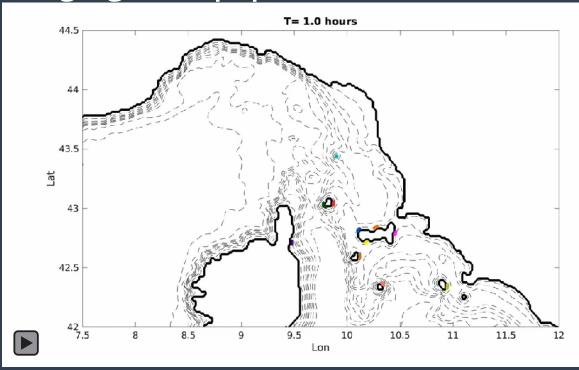


What is the circulation pattern during current reversals?

WCC veers right flows into the Channel and keeps moving southward pushing the warmer saltier ECC waters toward the eastern flank of the Channel

The meridional flow is characterized by colder and fresher Atlantic Waters brought by the WCC


These intrusions have been observed by Stocchino and Testoni (1966) and have so far been neglected



Larval flow among red gorgonian populations

Padron et al., 2018

Lagrangian model	LTRANS
# of particles	163680
Simulated months	June-September 2004 2006
Larval behavior	Passive/Sinking

The larval flow and the connectivity between populations suggests trans-border conservation practices

Conclusions

We explored the link between the Ligurian and Tyrrhenian seas

the Corsica channel is characterized by a **high-frequency variability** associated with **current reversal** within the channel

current reversals are more **frequent** near the **western flank** and in **summer** and early fall

the reversals start from the tip of the Corsica Island and are due to WCC intrusions into the Channel.

The link between the two basins favors the connectivity between red gorgonian populations and suggest trans-border conservation practices

