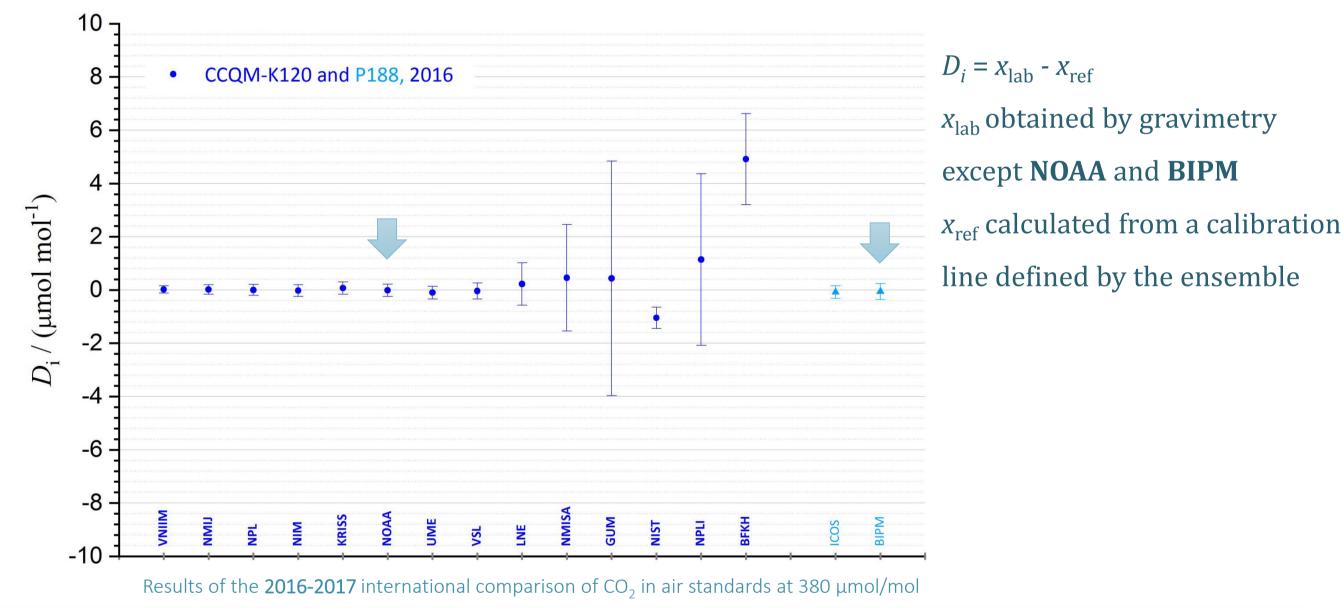

bureau international des poids et mesures

INTRODUCTION

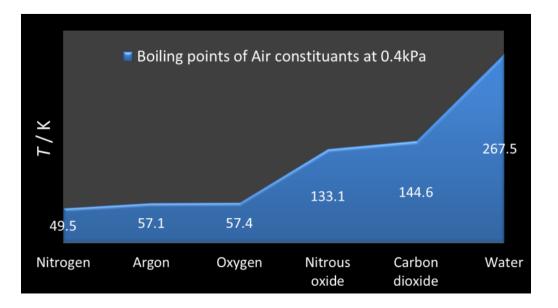
BIPM.QM–K2, an on–going comparison to monitor the accuracy and uncertainty of primary CO₂ in air standards

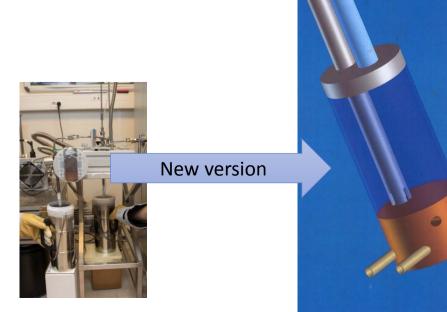
- Efforts to constraint CO₂ emissions induce an increased number of monitoring stations
- Monitoring networks of CO₂ concentration in atmosphere need accurate standards with CO₂ mole fractions known to better than 0.03% relative uncertainty
- **Reference mixtures of CO₂ in air** from metrology institutes and central calibration facilities to be compared at BIPM
- BIPM central facility to consist of system to measure CO_2 in air by manometry



2.5t 5t 7.5t 10t 12.5t 15t 17.5t 20t 25t >50 Source: OWID based on Global Carbon Project; Gapminder & UN OurWorldInData.org/co2-and-other-greenhouse-gas-emissions/ • CC BY

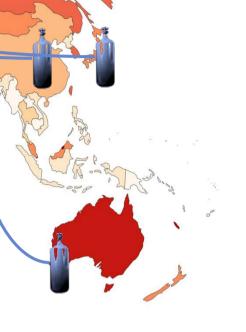
Map : CO_2 emissions per capita measured in tonnes per year, in 2016


COMPARABILITY WITH OTHERS


- International comparison CCQM-K120/P188 performed by BIPM with 16 labs
- Comparison of reference mixtures prepared by gravimetry
- Included NOAA which maintain an all-glass manometric system

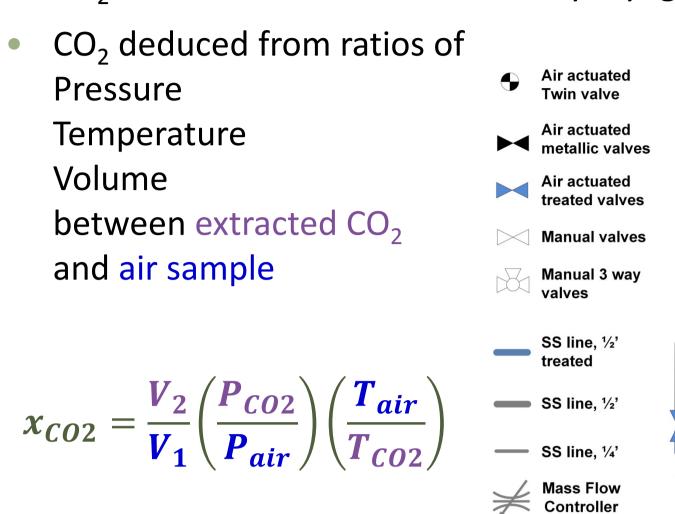
TRAPPING EFFICIENCY

- CO₂ trapping efficiency is a critical parameter; it needs to be maximized and traces of un-trapped CO₂ estimated, as well as the co-trapped compounds H₂O and N₂O
- Twins traps are used to maximize CO_2 from H_2O separation; automation of the twins traps is under way to allow a better temperature control
- A residual gas analyser (mass spectrometer) was added to the setup to quantify traces of H_2O



Twin traps, manual version being replaced by temperature controlled version

Standards and Scales for atmospheric CO₂ measurements: A new reference facility


J. Viallon, C. Meyer, P. Moussay and R.I. Wielgosz, Bureau International des Poids et Mesures, Pavillon de Breteuil, 92310 Sèvres

MEASUREMENT PRINCIPLE

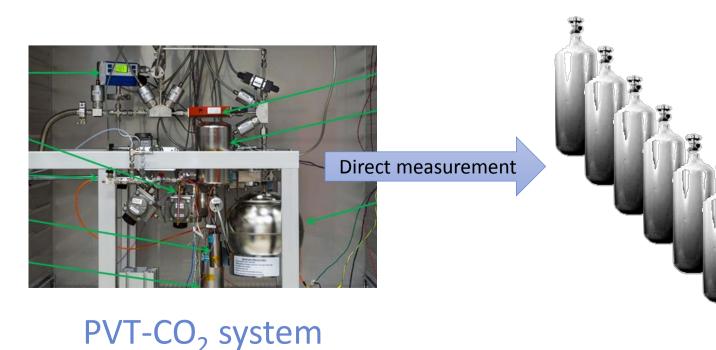
• CO₂ mole fraction measurement by cryogenic separation from its air matrix

 $V_1 = V_a + V_b + V_e = 6L$

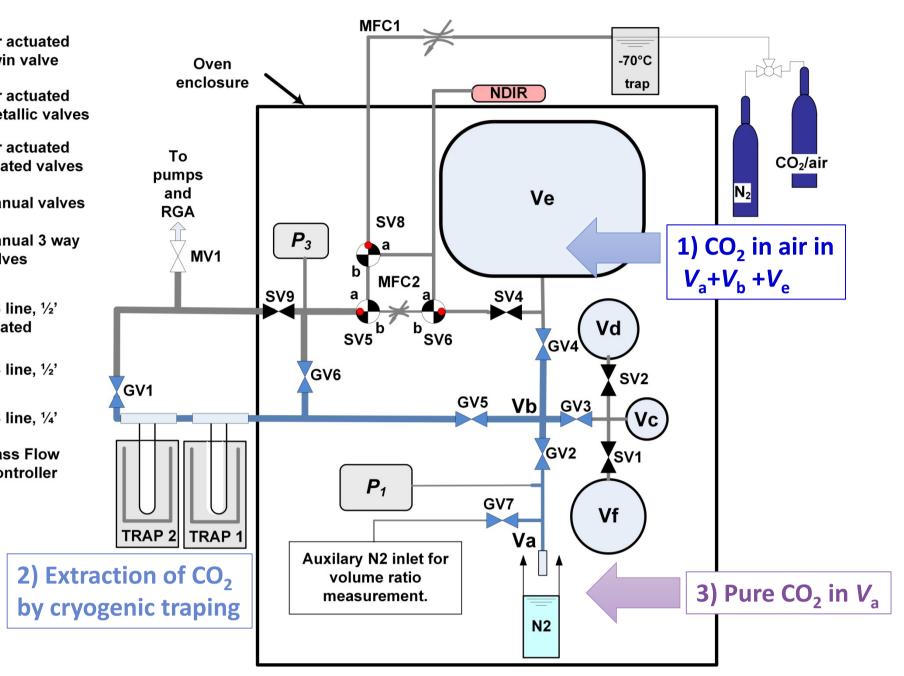
 $V_2 = V_a = 6 mL$

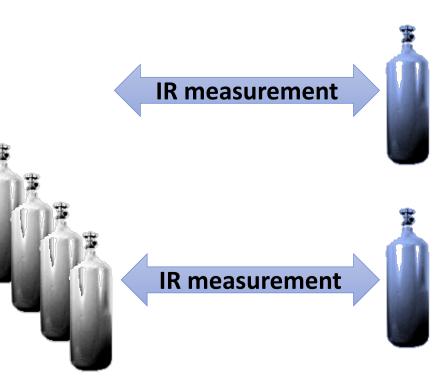
Flow chart of the CO₂-PVT system, with its containers inside an oven maintained at 40°C

MEASUREMENT UNCERTAINTIES


- 2018 uncertainty budget includes several corrections
- **Most important** uncertainty comes from **volume ratio** R_{y}
- This triggered R_v measurements with several gases

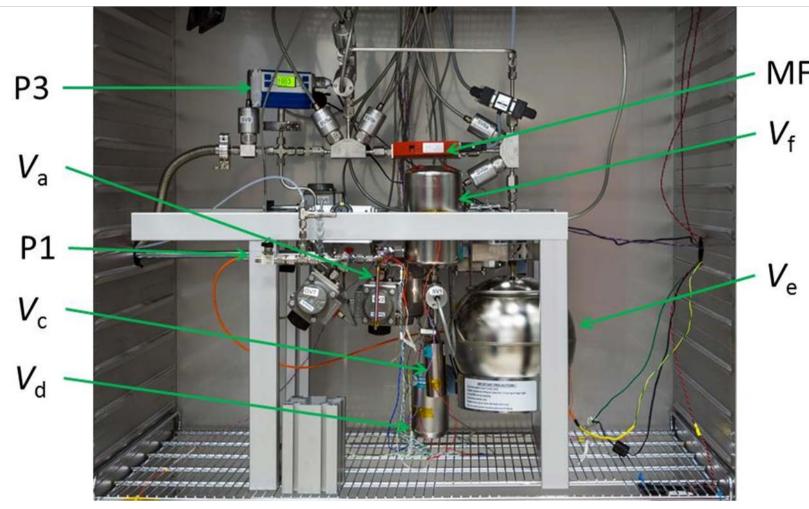
Description	Symbol	Approximate Value	Standard Uncertainty	Contribution to u(x _{co2})/x _{co2}
Air temperature (type B)	T _{air}	313.5 К	0.01 K	3.2×10 ⁻⁵
Air pressure (type B)	P _{air}	100000 Pa	2.3 Pa	2.3×10 ⁻⁵
CO ₂ temperature (type B)	T _{CO2}	313.5 К	0.01 K	3.2×10 ⁻⁵
CO ₂ pressure (type B)	P _{CO2}	25000 Pa	1.7 Pa	6.8×10 ⁻⁵
Volume ratio meas.	R _v	658.9	0.19	2.9×10 ⁻⁴
Virial function for air	$\gamma_{\rm air}$	0.99982	6.2×10 ⁻⁶	6.2×10 ⁻⁶
Virial function for CO ₂	γ _{co2}	0.99894	2.4×10 ⁻⁶	2.4×10 ⁻⁶
N ₂ O Correction	x _{N2O}	325 nmol/mol	1.6 nmol/mol	4.2×10 ⁻⁶
Repeatability of x_{co2}	X _{CO2_rep}	380 µmol/mol	0.07 μmol/mol	2.0×10 ⁻⁴
CO ₂ escaping trap	x _{CO2_esc}	0 µmol/mol	0.04 μmol/mol	1.0×10 ⁻⁴
CO ₂ not transferred to V _s	x _{CO2_nt}	0 µmol/mol	0.02 μmol/mol	5.0×10 ⁻⁵
Background pressure	P _b	14.2 Pa	2.3 Pa	9.2×10 ⁻⁵
Total	x _{CO2}	380 µmol/mol	0.15 µmol/mol (3.9×10 ⁻⁴ relative)	


STABILITY TESTING OF THE FACILITY

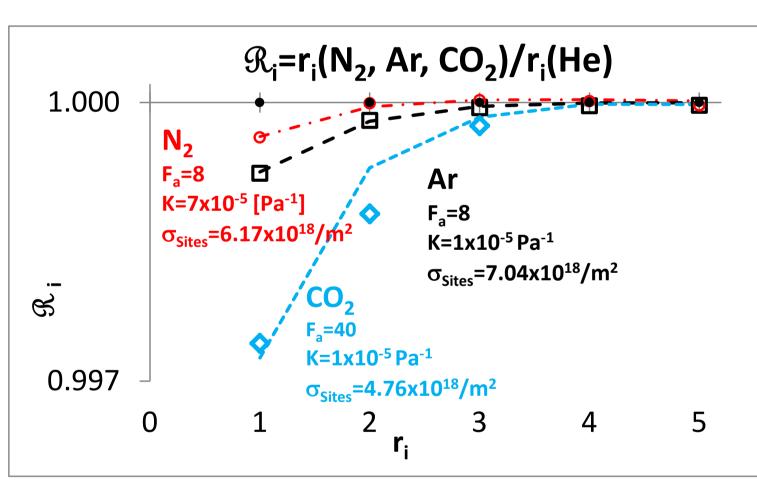

- The CO₂-PVT system will value assign an ensemble of 2 times 9 reference mixtures
- Each ensemble to cover the range 380 µmol mol⁻¹ to 800 µmol mol⁻¹
- Stability of the CO₂-PVT to be monitored against the ensemble of standards and reference mixtures from partners

(2019-2021)

Ensemble of reference mixtures regularly value assigned at BIPM



 CO_2 in air Calibration standard Prepared by partner 2


INNOVATIVE SURFACE TREATMENT

- The system was built in stainless steel for mechanical stability
- Parts in contact with CO₂ were Silconert[®] treated to minimise adsorptions
- 3 auxilliaries vessels were added to allow a better volume ratio measurement

CO₂ ADSORPTION MODEL

- $R_{\rm v}$ shows dependency on the gas, mainly observed in $r_1 = V_a / V_b$
- Much worse with CO_2 than inert gases He, Ar or N_2
- Best explanation is CO_2 adsorption on surfaces inside the small volume V_a

Fit of minor volume ratios measurements with several gases using a Langmuir model

CONCLUSION

- A first version of the BIPM CO₂-PVT system was validated during the international comparison on CO₂ in air standards performed in 2016-2017 at 380µmol/mol
- Since then, the uncertainties associated with CO₂ mole fractions measurements by the manometric method are being reduced with a better understanding of the trapping efficiency as well as adsorption of CO₂ on the surfaces
- The system is being cheked for stability against an ensemble of 18 reference mixtures in the range 380-800 µmol/mol, in view of a future on-demand **comparison BIPM.QM-K2** with standards from National Metrology Institutes

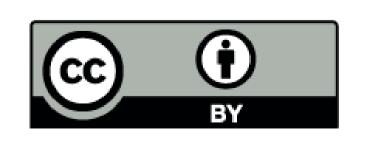
Thanks to visiting scientists at BIPM: S. Maxwell, C. Meyer, J. Schmidt, NIST, USA F. Arrhen, **RISE**, Sweden For further information projects can be obtained at <u>www.bipm.org</u>

MFC2

Volume ratio measured by series of expansions of inert gas in the 5 vessels, from the smallest to the biggest

$$r_i = \frac{V_i}{V_{i+1}} = \frac{P_i}{P_{i+1}}$$

 P_i close to atmo. Pressure *P_{i+1}* close to 20 kPa


Picture of the CO_2 -PVT system inside the oven

Total number of CO_2 molecules in V_a $N_{Tot} = N_{Bulk} + N_{Ad}$

•••

Number of « free » molecules $N_{Bulk} = \frac{PV_a}{RT}$

Number of adsorbed molecules calculated with Langmuir model $N_{ad} = \theta(P)S_a F_a \sigma_{sites}$ $\theta(P)$ fractional coverage of possible adsorptions sites $\theta(P) = \frac{KP}{1+KP}$ σ_{sites} density of adsorption sites S_{α} surface F_a surface enhancement factor

Please contact *jviallon@bipm.org*. More information on this and related