# Quantifying bed roughness beneath contemporary and palaeo-ice streams





Fran Falcini



David Rippin, Maarten Krabbendam & Katherine Selby



#### Rationale





Main findings

#### Rationale

Aim: to measure bed roughness of contemporary and palaeo-ice stream beds at the same scale.

- 1. Explore whether Radio Echo Sounding track spacing is sufficient to capture bed roughness trends.
- 2. Compare whether the method used to measure bed roughness produces different results (FFT analysis or Standard Deviation).
- 3. Investigate whether orientation of transects in relation to ice flow direction influences bed-roughness results.



Main findings

# Study sites















(Falcini et al., 2018)

Rationale Study sites Results Main findings









# Main findings

- Fast palaeo-ice flow can occur over a rough, hard bed.
- Similar trends in bed roughness values were found using Fast Fourier Transform analysis and standard deviation methods.
- Spacing of RES transects is too wide.
- Transect orientation influences bed roughness measurements.



Main findings

