
Say it in 51 bytes
Nick van de Giesen1, Steven Weijs2

1Delft University of Technology, Netherlands, n.c.vandegiesen@tudelft.nl; 2University of Britsh Columbia, Canada, steven.weijs@civil.ubc.ca

Problem statement
When you want to send your measurement
data to some internet database, there are a
number of options that require very little
energy. A popular one is LoRa (Long Range)
radio, which can run for months on a few AA
batteries. The disadvantage is that the
amount of information that can be sent is very
limited. A typical maximum message length is
51 bytes and, normally, only a few messages
can be sent per day.

The question then becomes: How can I stuff
as much information as possible in 51 bytes?
The answers depend heavily on the nature
and number of data collected and the
envisioned applications.

Quantification
If you want to report water levels once per hour
over a day, there is no need for processing.
You would have two bytes per measurement,
which should normally be enough if you report
the water level in centimeters, or millimeters,
above a reference level as integer. For many
measurements, 256 levels would provide
sufficient resolution but the range usually has
to be scaled properly.

On the other side of the spectrum would be the
case in which there are so many data that only
a statistical description would fit, such as for a
disdrometer. There is a little known but very
handy algorithm to calculate cumulatively as
many moments as one wants as one collects
data in a well-scaled way [2]. Two bytes per
moment will transmit a lot of detail!

51 Bytes
This sentence contains fifty-one ASCII
characters!! A “naive” format, like CSV,
would go about sending information in this
way.
At the same time:
51 bytes = 2408 combinations ≈ 6.6*10122 >>

Number of electrons in universe* >>
4.6*1046 = Weijs-vandeGiesen constant ≔

 Number of water molecules on Earth.
00100111 11101111 11011110 10100000 11110000 10100101
11100101 10110010 01011111 11011100 11101010 00101011
01010100 11101100 11101110 01101000 10101110 00000011
11001011 11000011 11000101 11100101 00111010 10110110
01000101 00100111 01101001 00011001 10001000 10111001
00110001 10111000 01101110 00100101 01011011 10111010
11100110 11100011 00111101 11100110 11101011 10100110
01111001 00100110 00001010 10011101 01011000 11000111

11000101 11011111 11000000

408 random bits

*Assuming there is more than one [1].

Optimal coding
Once the observations have been quantified,
they have to be encoded in such a way that as
much information as possible is captured.
Huffman coding provides a straightforward way
to to encode as much information in as shirt a
message as possible.

The most frequently occuring events are given
the shortest descriptions.

If no standard reporting intervals are needed,
one could simply write a message, using a few
bits for boring stuff and more bits for surprising
stuff until 51 bytes are filled and then transmit.
An adaptive algorithm needs to be designed.

NOTES
[1] See Wheeler conjecture
(https://www.nobelprize.org/prizes/physics/1965/feynman/lecture/)

[2] Philippe Pebay (2008): Formulas for Robust, One-Pass Parallel
Computation of Covariances and Arbitrary-Order Statistical Moments
(https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf)

EGU2019-2892

Typical LoRa
module with
antenna and

SPI
connections.

Source:
Wikimedia CC0

Observable
universe.

Source:
https://commons.wikimedia.
org/wiki/File:Observable_Uni
verse_with_Measurements_

01.png

Huffman coding assigning shortest
words to most frequent events.

Source: Wikimedia, CC0

