
Determining the Importance of Different Scales of Isotopic Analysis for 
Identifying Glaciohydraulic Supercooling 

1) Introduction, Research Background and Aim
Ÿ Glaciohydraulic supercooling occurs as subglacial water at/or below the pressure melting point ascends from an overdeepening and consequently freezes (see figure 1).

[1,2,3,4,5,6]
Ÿ Some glaciologists have suggested that supercooling is the primary mechanism for basal ice formation . 

[7,8,9,10,11,12,13]
Ÿ Other glaciologists have suggested it is only one of several mechanisms . 

[2,5] [14]
Ÿ Supercooling is an important process, e.g. entraining debris during Heinrich Events  and contributing to the slow down of Kamb Ice Stream, Antarctica . 

 [8,9]
Ÿ Ice formed from supercooled water under laboratory conditions has been suggested to have a distinctive herringbone crystal structure, termed ‘herringbone ice’ .
Ÿ Methodological approaches differ across studies and sample sizes for isotopic analysis are often on a bulk-scale.

[15,16] [6,13]
Ÿ Sample sizes of basal ice formed from supercooling range from 30mL  to 250-300mL , when sampled for isotopic analysis at glaciers. 
Ÿ These bulk ice samples could potentially contain ice formed from different processes.   
Ÿ This study has been designed to micro-sample ice formed from supercooled water to determine whether bulk-scale sampling is suitable. 
Ÿ Aim: To determine whether bulk-scale sampling of ice formed from supercooled water is overlooking micro-scale isotopic differences.

2) Methodology
Ÿ This study followed experimental laboratory 

[8,9,17]approaches by pilot papers . 
Ÿ A container was placed in a cold laboratory 

oat -12 C with a submerged pump. 
Ÿ The turbulence caused by the pump allowed 

othe water to remain liquid, below 0 C.
Ÿ The pump was turned off, freezing the 

supercooled water. 
Ÿ 3 facies formed; 1) clear ice; 2) herringbone 

ice and 3) bulk ice (see figure 2). 
Ÿ Facies 3 represents large-scale sampling, 

[6,13,15,16]illustrated by earlier papers . 
Ÿ The samples were melted on a 1.5mL scale, 

compared to 30mL-300mL collected by 
[6,13,15,16]previous studies .

Figure 2. Demonstrating visual differences of the 3 facies in this study. 1) Clear ice: formed 
from regular freezing processes. 2) Herringbone ice: formed from supercooled water. 3) Bulk 
ice: contained both the clear and herringbone ice.

3) Results
Ÿ The isotopic composition for the parent water source was ~49.87756  for D and ‰ δ

18~7.674296  for O. Table 1 shows the heaviest and lightest isotopic samples for each ‰ δ
ice facies and figure 3 shows the results of the experiment.

4) Interpretations and Conclusions
[2,6,10,15]

Ÿ Supercooled glacier ice has been suggested to be isotopically enriched at glaciers .
Ÿ Herringbone ice in this study was isotopically depleted, because of experiments being in a 

closed-system.
[18]

Ÿ Ice which forms first is isotopically enriched, whereas ice which formed last is depleted . 
Ÿ The clear ice facies formed first and the herringbone ice was last to form, due to the turbulence 

being spatially effective in the closed-system experiment.
Ÿ Freezing slopes in open and closed-systems should be relatively similar, unless the input has 

[19]
a significantly different isotopic composition, compared to the initial parent water source . 

Ÿ The freezing slopes gradient range from 3.9613 to 7.2363, because of different stages of 
freezing .

Ÿ ~49.87756  for D and ~7.674296  The initial parent water had an isotopic composition of ‰ δ ‰
18for O.δ

Ÿ The water at the later stages had become heavier with the herringbone facies having isotopic 
18compositions of  ~81.79  for D and ~12.21   for O, explaining different freezing slopes ‰ δ ‰ δ

for each facies[19]
.
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Ice Facies Heaviest Sample Lightest Sample 

Herringbne Ice 18
Ÿ D: ~81.79  - O: ~12.21δ ‰ δ ‰ 18

Ÿ D: ~70.75  - O: ~10.35δ ‰ δ ‰

Bulk Ice 
18

Ÿ D: ~65.84  - O: ~10.24δ ‰ δ ‰ 18
Ÿ D: ~59.01  - O: ~8.66δ ‰ δ ‰

Clear Ice 
18

Ÿ D: ~48.27  - O: ~7.59δ ‰ δ ‰ 18
Ÿ D: ~37.51  - O: ~5.84δ ‰ δ ‰
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Table 1. The heaviest and lightest isotopic samples for the 3 facies in this study.

Figure 3. A δ δ18D/ O graph demonstrating the isotopic compositions of the ice 
facies, the Global Meteroic Water Line and the freezing slopes for each facies.
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Figure 1. Illustrating a schematic diagram of 
glaciohydraulic supercooling. 
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